机器学习——朴素贝叶斯

朴素贝叶斯


我们假设特征之间 相互独立 。所谓 独立(independence) 指的是统计意义上的独立,即一个特征或者单词出现的可能性与它和其他单词相邻没有关系,比如说,“我们”中的“我”和“们”出现的概率与这两个字相邻没有任何关系。这个假设正是朴素贝叶斯分类器中 朴素(naive) 一词的含义。朴素贝叶斯分类器中的另一个假设是, 每个特征同等重要

算法简介

在这里插入图片描述

大致是小明收到了30封信,其中16封是作业,还有13封是情书。小明分别统计了两种信中出现词汇的次数并计算概率。

最后一封信是班长的,小明发现其中有红豆和喜欢两个词语。

计算在作业中红豆出现的概率乘以作业中喜欢出现的概率再乘以前面29封信中作业出现的概率

最后算出这封信是情书的概率大于作业,就认为该封信是情书

算法中常见的两个问题

  1. 要计算多个概率的乘积以获得文档属于某个类别的概率,即计算 p(w0|1) * p(w1|1) * p(w2|1)。如果其中一个概率值为 0,那么最后的乘积也为 0(就比如上图中,在情书中出现辛苦二字出现的概率为0,那万一情书内容为:“我喜欢你。辛苦你了”,这样最后算得的概率为0)。为降低这种影响,可以将所有词的出现数初始化为 1,并将分母初始化为 2 (取1 或 2 的目的主要是为了保证分子和分母不为0,大家可以根据业务需求进行更改)。

  2. 另一个遇到的问题是下溢出,这是由于太多很小的数相乘造成的。当计算乘积 p(w0|ci) * p(w1|ci) * p(w2|ci)... p(wn|ci) 时,由于大部分因子都非常小,所以程序会下溢出或者得到不正确的答案。(用 Python 尝试相乘许多很小的数,最后四舍五入后会得到 0)。一种解决办法是对乘积取自然对数。在代数中有 ln(a * b) = ln(a) + ln(b), 于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。

Python相关语法
x=[0]*5  #x=[0, 0, 0, 0, 0]
x=set(x)  #x={0} 说明set是用来去重的,返回的是一个字典
x=list(x) #x=[0] 再转化为链表


x=['a','b','c','d']
y=['a','e','c','e','f']
x=set(x)
y=set(y)
z=x|y  #z={'a', 'b', 'c', 'd', 'e', 'f'}
##或运算是用于求两个集合的并集的,列表不能进行或运算,所以转换成字典
项目案例1-屏蔽社区留言板的侮辱性言论
from __future__ import print_function
from numpy import *


# 项目案例1: 屏蔽社区留言板的侮辱性言论

def loadDataSet():
    """
    创建数据集
    :return: 单词列表postingList, 所属类别classVec
    """
    postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], 
                   ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                   ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                   ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                   ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                   ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0, 1, 0, 1, 0, 1]  # 1 is abusive, 0 not
    return postingList, classVec


def createVocabList(dataSet):
    """
    获取所有单词的集合
    :param dataSet: 数据集
    :return: 所有单词的集合(即不含重复元素的单词列表)
    """
    vocabSet = set([])  # create empty set
    for document in dataSet:
        # 操作符 | 用于求两个集合的并集
        vocabSet = vocabSet | set(document)  # union of the two sets
    return list(vocabSet)


def setOfWords2Vec(vocabList, inputSet):
    """
    遍历查看该单词是否出现,出现该单词则将该单词置1
    :param vocabList: 所有单词集合列表
    :param inputSet: 输入数据集
    :return: 匹配列表[0,1,0,1...],其中 1与0 表示词汇表中的单词是否出现在输入的数据集中
    """
    # 创建一个和词汇表等长的向量,并将其元素都设置为0
    returnVec = [0] * len(vocabList)# [0,0......]
    # 遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        ##else:
        ##   print("the word: %s is not in my Vocabulary!" % word)
    return returnVec



def trainNB0(trainMatrix, trainCategory):
    """
    训练数据优化版本
    :param trainMatrix: 文件单词矩阵
    :param trainCategory: 文件对应的类别
    :return:
    """
    # 总文件数
    numTrainDocs = len(trainMatrix)
    # 总单词数
    numWords = len(trainMatrix[0])
    # 侮辱性文件的出现概率
    pAbusive = sum(trainCategory) / float(numTrainDocs)
    # 构造单词出现次数列表
    # p0Num 正常的统计
    # p1Num 侮辱的统计 
    # 避免单词列表中的任何一个单词为0,而导致最后的乘积为0,所以将每个单词的出现次数初始化为 1
    p0Num = ones(numWords)#[0,0......]->[1,1,1,1,1.....]
    p1Num = ones(numWords)

    # 整个数据集单词出现总数,2.0根据样本/实际调查结果调整分母的值(2主要是避免分母为0,当然值可以调整)
    # p0Denom 正常的统计
    # p1Denom 侮辱的统计
    p0Denom = 2.0
    p1Denom = 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            # 累加辱骂词的频次
            p1Num += trainMatrix[i]
            # 对每篇文章的辱骂的频次 进行统计汇总
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    # 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
    p1Vect = log(p1Num / p1Denom)
    # 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
    p0Vect = log(p0Num / p0Denom)
    return p0Vect, p1Vect, pAbusive


def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    """
    使用算法: 
        # 将乘法转换为加法
        乘法: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C)/P(F1F2...Fn)
        加法: P(F1|C)*P(F2|C)....P(Fn|C)P(C) -> log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
    :param vec2Classify: 待测数据[0,1,1,1,1...],即要分类的向量
    :param p0Vec: 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
    :param p1Vec: 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
    :param pClass1: 类别1,侮辱性文件的出现概率
    :return: 类别1 or 0
    """
    # 计算公式  log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
    # 使用 NumPy 数组来计算两个向量相乘的结果,这里的相乘是指对应元素相乘,即先将两个向量中的第一个元素相乘,然后将第2个元素相乘,以此类推。
    # 我的理解是: 这里的 vec2Classify * p1Vec 的意思就是将每个词与其对应的概率相关联起来
    # 可以理解为 1.单词在词汇表中的条件下,文件是good 类别的概率 也可以理解为 2.在整个空间下,文件既在词汇表中又是good类别的概率
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0


def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0] * len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec


def testingNB():
    """
    测试朴素贝叶斯算法
    """
    # 1. 加载数据集
    listOPosts, listClasses = loadDataSet()
    # 2. 创建单词集合
    myVocabList = createVocabList(listOPosts)
    # 3. 计算单词是否出现并创建数据矩阵
    trainMat = []
    for postinDoc in listOPosts:
        # 返回m*len(myVocabList)的矩阵, 记录的都是0,1信息
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    # 4. 训练数据
    p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
    # 5. 测试数据
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))







if __name__ == "__main__":
     testingNB()
    # spamTest()
    # laTest()

项目案例2: 使用朴素贝叶斯过滤垃圾邮件
# ------------------------------------------------------------------------------------------
# 项目案例2: 使用朴素贝叶斯过滤垃圾邮件

# 切分文本
def textParse(bigString):
    '''
    Desc:
        接收一个大字符串并将其解析为字符串列表
    Args:
        bigString -- 大字符串
    Returns:
        去掉少于 2 个字符的字符串,并将所有字符串转换为小写,返回字符串列表
    '''
    import re
    # 使用正则表达式来切分句子,其中分隔符是除单词、数字外的任意字符串
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]


def spamTest():
    '''
    Desc:
        对贝叶斯垃圾邮件分类器进行自动化处理。
    Args:
        none
    Returns:
        对测试集中的每封邮件进行分类,若邮件分类错误,则错误数加 1,最后返回总的错误百分比。
    '''
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        # 切分,解析数据,并归类为 1 类别
        wordList = textParse(open('F://机器学习//data-master//机器学习//4.NaiveBayes//4.NaiveBayes//email//spam/%d.txt' % i).read())
        docList.append(wordList)
        classList.append(1)
        # 切分,解析数据,并归类为 0 类别
        wordList = textParse(open('F://机器学习//data-master//机器学习//4.NaiveBayes//4.NaiveBayes//email//ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    # 创建词汇表    
    vocabList = createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    # 随机取 10 个邮件用来测试
    for i in range(10):
        # random.uniform(x, y) 随机生成一个范围为 x - y 的实数
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])
        if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print('the errorCount is: ', errorCount)
    print('the testSet length is :', len(testSet))
    print('the error rate is :', float(errorCount)/len(testSet))


def testParseTest():
    print(textParse(open('data/4.NaiveBayes/email/ham/1.txt').read()))
项目案例3: 使用朴素贝叶斯从个人广告中获取区域倾向

项目概述

广告商往往想知道关于一个人的一些特定人口统计信息,以便能更好地定向推销广告。

我们将分别从美国的两个城市中选取一些人,通过分析这些人发布的信息,来比较这两个城市的人们在广告用词上是否不同。如果结论确实不同,那么他们各自常用的词是哪些,从人们的用词当中,我们能否对不同城市的人所关心的内容有所了解。

# -----------------------------------------------------------------------------------
# 项目案例3: 使用朴素贝叶斯从个人广告中获取区域倾向

# 将文本文件解析成 词条向量
def setOfWords2VecMN(vocabList,inputSet):
    returnVec=[0]*len(vocabList)  # 创建一个其中所含元素都为0的向量
    for word in inputSet:
        if word in vocabList:
                returnVec[vocabList.index(word)]+=1
    return returnVec


#文件解析
def textParse(bigString):
    import re
    listOfTokens=re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok)>2]


#RSS源分类器及高频词去除函数
def calcMostFreq(vocabList,fullText):
    import operator
    freqDict={}
    for token in vocabList:  #遍历词汇表中的每个词
        freqDict[token]=fullText.count(token)  #统计每个词在文本中出现的次数
    sortedFreq=sorted(freqDict.iteritems(),key=operator.itemgetter(1),reverse=True)  #根据每个词出现的次数从高到底对字典进行排序
    return sortedFreq[:30]   #返回出现次数最高的30个单词
def localWords(feed1,feed0):
    import feedparser
    docList=[];classList=[];fullText=[]
    minLen=min(len(feed1['entries']),len(feed0['entries']))
    for i in range(minLen):
        wordList=textParse(feed1['entries'][i]['summary'])   #每次访问一条RSS源
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList=textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList=createVocabList(docList)
    top30Words=calcMostFreq(vocabList,fullText)
    for pairW in top30Words:
        if pairW[0] in vocabList:vocabList.remove(pairW[0])    #去掉出现次数最高的那些词
    trainingSet=range(2*minLen);testSet=[]
    for i in range(20):
        randIndex=int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[];trainClasses=[]
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList,docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam=trainNB0(array(trainMat),array(trainClasses))
    errorCount=0
    for docIndex in testSet:
        wordVector=bagOfWords2VecMN(vocabList,docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam)!=classList[docIndex]:
            errorCount+=1
    print('the error rate is:',float(errorCount)/len(testSet))
    return vocabList,p0V,p1V


# 最具表征性的词汇显示函数
def getTopWords(ny,sf):
    import operator
    vocabList,p0V,p1V=localWords(ny,sf)
    topNY=[];topSF=[]
    for i in range(len(p0V)):
        if p0V[i]>-6.0:topSF.append((vocabList[i],p0V[i]))
        if p1V[i]>-6.0:topNY.append((vocabList[i],p1V[i]))
    sortedSF=sorted(topSF,key=lambda pair:pair[1],reverse=True)
    print("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**")
    for item in sortedSF:
        print(item[0])
    sortedNY=sorted(topNY,key=lambda pair:pair[1],reverse=True)
    print("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**")
    for item in sortedNY:
        print(item[0])
sklearn
import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

In [2]:

digits = load_digits()

In [5]:

x,y=digits.data,digits.target

In [36]:

x.shape

Out[36]:

(1797, 64)

In [7]:

y

Out[7]:

array([0, 1, 2, ..., 8, 9, 8])

In [8]:

##可以发现他的标签就是0到9的数字
np.unique(y)

Out[8]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [31]:

Xtrain,Xtest,Ytrain,Ytest = train_test_split(x,y,test_size=0.3)

In [32]:

##高斯分布下的朴素贝叶斯
gnb = GaussianNB().fit(Xtrain,Ytrain)
acc_score = gnb.score(Xtest,Ytest)
acc_score

Out[32]:

0.8537037037037037

In [45]:

##查看预测结果
Y_pred = gnb.predict(Xtest)
Y_pred.shape

Out[45]:

(540,)

In [48]:

##查看预测的结果概率
##就是算出每一个数字的概率,概率最大的就认为是
prob = gnb.predict_proba(Xtest)
prob.shape

Out[48]:

(540, 10)
# GaussianNB_高斯朴素贝叶斯
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X, Y)
print(clf.predict([[-0.8, -1]]))
print(clf.predict_proba([[-0.8, -1]]))
clf_pf = GaussianNB()
clf_pf.partial_fit(X, Y, np.unique(Y))
print(clf_pf.predict([[-0.8, -1]]))
print(clf_pf.predict_proba([[-0.8, -1]]))



# MultinomialNB_多项朴素贝叶斯
'''
import numpy as np
X = np.random.randint(5, size=(6, 100))
y = np.array([1, 2, 3, 4, 5, 6])
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf.fit(X, y)
print clf.predict(X[2:3])
'''

# BernoulliNB_伯努利朴素贝叶斯
'''
import numpy as np
X = np.random.randint(2, size=(6, 100))
Y = np.array([1, 2, 3, 4, 4, 5])
from sklearn.naive_bayes import BernoulliNB
clf = BernoulliNB()
clf.fit(X, Y)
print clf.predict(X[2:3])
'''
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值