证明交换一个行列式的某两行(列), 行列式改变符号.

求 证 : 交 换 一 个 行 列 式 的 某 两 行 ( 列 ) , 行 列 式 改 变 符 号 .   证 明 如 下 : 设 给 定 行 列 式 为 : D = ∣ a 11 a 12 . . . a 1 n . . . . . . a i 1 a i 2 . . . a i n . . . . . . a j 1 a j 2 . . . a j n . . . . . . a n 1 a n 2 . . . a n n ∣   交 换 i j 两 行 以 后 得 : D ′ = ∣ a 11 a 12 . . . a 1 n . . . . . . a j 1 a j 2 . . . a j n . . . . . . a i 1 a i 2 . . . a i n . . . . . . a n 1 a n 2 . . . a n n ∣   其 中   D = ∑ ( − 1 ) τ ( 123... n ) + τ ( p 1 p 2 . . p i . . p j . . p n ) a 1 p 1 a 2 p 2 . . a i p i . . a j p j . . a n p n   交 换 i j 两 行 后 ,   D 中 第 i 行 第 p i 列 的 元 素 a i p i 对 应   D ′ 中 的 第 j 行 第 p i 列 的 元 素 a j p i ,   D 中 第 j 行 第 p j 列 的 元 素 a j p j 对 应   D ′ 中 的 第 i 行 第 p j 列 的 元 素 a i p j ,   即 有 :   D ′ = ∑ ( − 1 ) τ ( 123... n ) + τ ( p 1 p 2 . . p j . . p i . . p n ) a 1 p 1 a 2 p 2 . . a i p j . . a j p i . . a n p n   其 中   τ ( p 1 p 2 . . p i . . p j . . p n ) 与   τ ( p 1 p 2 . . p j . . p i . . p n ) 奇 偶 属 性 发 生 了 改 变 , 所 以 有   D = − D ′ ; 求证: 交换一个行列式的某两行(列), 行列式改变符号.\\ ~\\ 证明如下: 设给定行列式为: D = \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ & ... & ... \\ a_{i1} & a_{i2} & ... & a_{in} \\ & ... & ... \\ a_{j1} & a_{j2} & ... & a_{jn} \\ & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \end{vmatrix} \\ ~\\ 交换ij两行以后得:D^{'} = \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ & ... & ... \\ a_{j1} & a_{j2} & ... & a_{jn} \\ & ... & ... \\ a_{i1} & a_{i2} & ... & a_{in} \\ & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \end{vmatrix} \\ ~\\ 其中~D = \sum(-1)^{\tau(123...n) + \tau(p_1p_2..p_i..p_j..p_n)}a_{1p_1}a_{2p_2}..a_{ip_i}..a_{jp_j}..a_{np_n} \\ ~\\ 交换ij两行后,~D中第i行第p_i列的元素a_{ip_i}对应~D^{'}中的第j行第p_i列的元素a_{jp_i},~D中第j行第p_j列的元素a_{jp_j}对应~D^{'}中的第i行第p_j列的元素a_{ip_j},~即有: \\ ~\\ D^{'} = \sum(-1)^{\tau(123...n) + \tau(p_1p_2..p_j..p_i..p_n)}a_{1p_1}a_{2p_2}..a_{ip_j}..a_{jp_i}..a_{np_n} \\ ~\\ 其中~\tau(p_1p_2..p_i..p_j..p_n)与~\tau(p_1p_2..p_j..p_i..p_n)奇偶属性发生了改变, 所以有~D = -D^{'}; :(),. ::D=a11ai1aj1an1a12...ai2...aj2...an2.....................a1nainajnann ij:D=a11aj1ai1an1a12...aj2...ai2...an2.....................a1najnainann  D=(1)τ(123...n)+τ(p1p2..pi..pj..pn)a1p1a2p2..aipi..ajpj..anpn ij, Dipiaipi Djpiajpi, Djpjajpj Dipjaipj, : D=(1)τ(123...n)+τ(p1p2..pj..pi..pn)a1p1a2p2..aipj..ajpi..anpn  τ(p1p2..pi..pj..pn) τ(p1p2..pj..pi..pn), D=D;

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值