行列式是什么-运算规则
-
排列:不同的 n 元排列共有 n! 个
-
逆序:小数排在大数后面,叫逆序;一个排列中逆序的总和叫做这个排列的逆序数,记为 τ ( j 1 , . . . , j n ) \tau(j_1,...,j_n) τ(j1,...,jn)
-
逆序数的计算方法:
-
奇排列和偶排列:逆序数为偶数的排列为偶排列,逆序数为奇数的排列为奇排列
【举例】求排列 n(n-1) … 321 的逆序数
最终计算借助等差数列求和公式: S n = ( n ( a 1 + a n ) ) / 2 S_n=(n(a_1+a_n))/2 Sn=(n(a1+an))/2
【注🧨】 记住公式: ( ( n − 1 ) n ) / 2 ((n-1)n)/2 ((n−1)n)/2
行列式的定义
- 行列式是一个 n 行 n 列的方阵
- 行列式的计算结果是一个数,称为行列式值
- 二阶和三阶行列式的计算遵循对角线法则,且对角线法则只适用于二阶行列式和三阶行列式
- 三阶行列式的计算公式:①主对角线同方向的元素相加,减去副对角线同方向的元素,几阶同方向划线的元素就有几个
②加项的逆序数是偶数,减项的逆序数是奇数,列标是 j 1 , j 2 , j 3 j_1,j_2,j_3 j1,j2,j3 的某种排列组合(是看列标的逆序数),行标顺排 - n 阶行列式的计算:行标顺排,加项的逆序数是偶数,减项的逆序数是奇数,列标是 j 1 , j 2 , j 3 j_1,j_2,j_3 j1,j