GNN学习笔记(一)——图卷积网络(GCN)

一、引言

本文主要介绍图卷积网络(GCN),它是图神经网络(GNN)的一个重要分支。本节的介绍将从下面几点展开
1.Motivation:为什么需要图卷积神经网络
2.从空间域角度理解图卷积网络
3.从频域角度理解图卷积网络

二、Motivation:为什么需要图卷积神经网络

传统的CNN要求输入具有平移、尺度、形变不变性,具有规则的空间结构,比如图片、语音,可以用规则的一维或二维矩阵表示,但是生活中很多数据不具备规则的空间结构,比如社交网络、推荐系统等等。CNN中的卷积就是离散求和,GCN的一部分工作就是在寻找适用于图的卷积的形式。

三、从空间域角度理解图卷积网络

1. 图卷积的通式
在DNN网络中,单层网络的输出可以表示为如下所示:
在这里插入图片描述
类似的,在图卷积网络中,我们也定义定义图卷积层,记作如下所示:
在这里插入图片描述实现有如下几种:
2.实现一:平均法
在这里插入图片描述
CNN的卷积操作考虑的是一个点空间位置上的相邻像素,而到图里面自然想到用与某点边相连的点的加权和来代替该点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值