一、引言
本文主要介绍图卷积网络(GCN),它是图神经网络(GNN)的一个重要分支。本节的介绍将从下面几点展开
1.Motivation:为什么需要图卷积神经网络
2.从空间域角度理解图卷积网络
3.从频域角度理解图卷积网络
二、Motivation:为什么需要图卷积神经网络
传统的CNN要求输入具有平移、尺度、形变不变性,具有规则的空间结构,比如图片、语音,可以用规则的一维或二维矩阵表示,但是生活中很多数据不具备规则的空间结构,比如社交网络、推荐系统等等。CNN中的卷积就是离散求和,GCN的一部分工作就是在寻找适用于图的卷积的形式。
三、从空间域角度理解图卷积网络
1. 图卷积的通式
在DNN网络中,单层网络的输出可以表示为如下所示:

类似的,在图卷积网络中,我们也定义定义图卷积层,记作如下所示:
实现有如下几种:
2.实现一:平均法

CNN的卷积操作考虑的是一个点空间位置上的相邻像素,而到图里面自然想到用与某点边相连的点的加权和来代替该点。

最低0.47元/天 解锁文章
1650

被折叠的 条评论
为什么被折叠?



