分类理论基础
(PS:深度学习其实就是各种神经网络的应用)
卷积
’卷‘即卷积核匹配原图的过程,匹配最后的图称为特征图(当然,原图也可称特征图,特征图可以迭代),’积‘即图像抽象成矩阵做点积.
对于一张图片 卷积核(对比神经网络里的神经元)就是3×3×3 (即27个乘积)判断标准就是各自对应的图层的矩阵相点乘得到27个乘积相加得到一个值,不妨记这个值为,那么所有的
构成的即为特征图
zero paddidng操作(原始图片周围加一圈0)为了保持原始图和特征图的尺寸保持一致
卷积的动态演化
中间的部分就是卷积核在作用
1.1 隋唐小测(理解具体的应用过程)
小测1
小测2
那么问题来了,我们用卷积的目的就是简化参数,之后把图片拉直好用神经网络(即卷积到全连接),如下图,那对于一个基本的分类神经网络来说,通过变小特征图就可以达到简化参数的目的
即一个基本的分类神经网络为
怎么backward?
1.2 如何变小特征图
1.扩大卷积步长
转化成卷积的数学形式就是
计算方法
但这个方法并不好,详见
2.依靠Pooling:池化
原理显而易见,即用一个数表示四个数,这里介绍两种池化方法
*最大池化:优先选取池化窗口(2×2)中最大的数值
*平均池化:池化窗口四个数求和取平均
1.3 分类任务的loss函数
1.函数
以为例,即
2.交叉熵损失函数
对于多分类的交叉熵损失函数
举个栗子
btw,大家有没有注意到多分类的交叉熵损失函数长得很像最似然函数?其实这两者有一定联系,实际上,最似然函数也是一种损失函数。
1.4 一些经典的数据图片集介绍
- MNIST数据集,最入门的手写数字识别项目
- Cifar10数据集--10分类
- ImageNET--上百万张及要求分成1024类的一个比赛,很多著名的模型在此诞生,比如接下来要说的AlexNet
- CoCo数据集
1.5 Dropout和归一化
两者对比
实际应用
名词解释&问题示例
1.卷积,卷积核,感受野
2.Zero paddidng
3.如果要把特征图变小,为什么通常不采用扩大卷积步长的方法?
4.Sota模型