分类理论基础(五)

分类理论基础

(PS:深度学习其实就是各种神经网络的应用)

卷积

’卷‘即卷积核匹配原图的过程,匹配最后的图称为特征图(当然,原图也可称特征图,特征图可以迭代),’积‘即图像抽象成矩阵做点积.

对于一张图片 卷积核(对比神经网络里的神经元)就是3×3×3 (即27个乘积)判断标准就是各自对应的图层的矩阵相点乘得到27个乘积相加得到一个值,不妨记这个值为X_{11},那么所有的X_{ij}构成的即为特征图

zero paddidng操作(原始图片周围加一圈0)为了保持原始图和特征图的尺寸保持一致

卷积的动态演化

中间的部分就是卷积核在作用

1.1 隋唐小测(理解具体的应用过程)

小测1

小测2

那么问题来了,我们用卷积的目的就是简化参数,之后把图片拉直好用神经网络(即卷积到全连接),如下图,那对于一个基本的分类神经网络来说,通过变小特征图就可以达到简化参数的目的

即一个基本的分类神经网络为

怎么backward?

1.2 如何变小特征图

1.扩大卷积步长

转化成卷积的数学形式就是

计算方法

但这个方法并不好,详见

2.依靠Pooling:池化

原理显而易见,即用一个数表示四个数,这里介绍两种池化方法

*最大池化:优先选取池化窗口(2×2)中最大的数值

*平均池化:池化窗口四个数求和取平均

1.3 分类任务的loss函数

1.Softmax函数

y_{1}为例,即y_{1}^{`}=\frac{e^{11.7}}{e^{11.7}+e^{23}+e^{20}}

2.交叉熵损失函数

对于多分类的交叉熵损失函数

举个栗子

btw,大家有没有注意到多分类的交叉熵损失函数长得很像最似然函数?其实这两者有一定联系,实际上,最似然函数也是一种损失函数。

1.4 一些经典的数据图片集介绍

  • MNIST数据集,最入门的手写数字识别项目
  • Cifar10数据集--10分类
  • ImageNET--上百万张及要求分成1024类的一个比赛,很多著名的模型在此诞生,比如接下来要说的AlexNet
  • CoCo数据集

1.5 Dropout和归一化

两者对比

实际应用

名词解释&问题示例

1.卷积,卷积核,感受野

2.Zero paddidng

3.如果要把特征图变小,为什么通常不采用扩大卷积步长的方法?

4.Sota模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值