算法训练 | 剪格子(dfs + 剪枝 + 回溯)

本文介绍了如何使用深度优先搜索(DFS)结合剪枝策略来解决格子剪切问题。通过回溯算法,有效地减少了无效的计算路径,提高了求解效率。
摘要由CSDN通过智能技术生成
题目描述
如下图所示,3 x 3 的格子中填写了一些整数。

+--*--+--+
|10* 1|52|
+--****--+
|20|30* 1|
*******--+
| 1| 2| 3|
+--+--+--+

我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是 60。

本题的要求就是请你编程判定:对给定的 m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。

如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。

如果无法分割,则输出 0。

输入格式
程序先读入两个整数 m n 用空格分割 (m,n<10)。

接下来是 n 行,每行 m 个正整数,用空格分开。每个整数不大于 10000。

输出格式
输出一个整数,表示在所有解中,包含左上角的分割区可能包含的最小的格子数目。

样例输入 1
3 3
10 1 52
20 30 1
1 2 3

样例输出 1
3

样例输入 2
4 3
1 1 1 1
1 30 80 2
1 1 1 100

样例输出 2
10
public class 剪格子 {
   
	static int [][] arr;
	static int [][] visit;
	static int m;
	static int n;
	static int total;
	static int count=Integer.MAX_VALUE;//必须初始化为最大值,否则系统自动初始化为0,就不管怎样它都是最小了
	public static void main(String[] args) {
   
		Scanner sc = new Scanner(System.in)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值