大数据技术之Hadoop(HDFS)

第1章 HDFS概述

1.1 HDFS产出背景及定义
在这里插入图片描述
1.2 HDFS优缺点
在这里插入图片描述

1.3 HDFS组成架构
在这里插入图片描述
1.4 HDFS文件块大小(面试重点)
在这里插入图片描述

第2章 HDFS的Shell操作(开发重点)

1.基本语法
bin/hadoop fs 具体命令 OR bin/hdfs dfs 具体命令
dfs是fs的实现类。

2.命令大全

[jinghang@hadoop102 hadoop-2.7.2]$ bin/hadoop fs

[-appendToFile <localsrc> ... <dst>]
        [-cat [-ignoreCrc] <src> ...]
        [-checksum <src> ...]
        [-chgrp [-R] GROUP PATH...]
        [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
        [-chown [-R] [OWNER][:[GROUP]] PATH...]
        [-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
        [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
        [-count [-q] <path> ...]
        [-cp [-f] [-p] <src> ... <dst>]
        [-createSnapshot <snapshotDir> [<snapshotName>]]
        [-deleteSnapshot <snapshotDir> <snapshotName>]
        [-df [-h] [<path> ...]]
        [-du [-s] [-h] <path> ...]
        [-expunge]
        [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
        [-getfacl [-R] <path>]
        [-getmerge [-nl] <src> <localdst>]
        [-help [cmd ...]]
        [-ls [-d] [-h] [-R] [<path> ...]]
        [-mkdir [-p] <path> ...]
        [-moveFromLocal <localsrc> ... <dst>]
        [-moveToLocal <src> <localdst>]
        [-mv <src> ... <dst>]
        [-put [-f] [-p] <localsrc> ... <dst>]
        [-renameSnapshot <snapshotDir> <oldName> <newName>]
        [-rm [-f] [-r|-R] [-skipTrash] <src> ...]
        [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
        [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
        [-setrep [-R] [-w] <rep> <path> ...]
        [-stat [format] <path> ...]
        [-tail [-f] <file>]
        [-test -[defsz] <path>]
        [-text [-ignoreCrc] <src> ...]
        [-touchz <path> ...]
        [-usage [cmd ...]]

3.常用命令实操(在进行操作时一定要注意haddop 下的hdfs-site.xml中配置的节点数一定要和启动的datanode节点数一直,只能大不能小)
0)启动Hadoop集群(方便后续的测试)

[jinghang@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh
[jinghang@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh

(1)-help:输出这个命令参数

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -help rm

(2)-ls: 显示目录信息

用法1:hadoop fs -ls /
功能:列出hdfs文件系统根目录下的目录和文件
用法2:hadoop fs -ls -R /
功能:列出hdfs文件系统所有的目录和文件
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -ls /

(3)-mkdir:在HDFS上创建目录

用法1:hadoop fs -mkdir <hdfs path>
功能:只能一级一级的建目录,父目录不存在的话使用这个命令会报错
用法2:hadoop fs -mkdir -p <hdfs path>
功能:所创建的目录如果父目录不存在就创建该父目录
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir -p /sanguo/shuguo

(4)-test
 功能:测试检查目录或者文件是否存在
 使用方法:hadoop fs -test -[ezd] URI
选项:

-e 检查文件是否存在。如果存在则返回0。
-z 检查文件是否是0字节。如果是则返回0。
-d 如果路径是个目录,则返回0,否则返回1。
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -test -e /jinghang
[jinghang@hadoop102 hadoop-2.7.2]$ echo $?
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -test -z /jinghang/a.txt
[jinghang@hadoop102 hadoop-2.7.2]$ echo $?
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -test -d /jinghang/a.txt
[jinghang@hadoop102 hadoop-2.7.2]$ echo $?

(5)-moveFromLocal:从本地剪切粘贴到HDFS
用法:hadoop fs -moveFromLocal
功能:与put相类似,命令执行后源文件 local src 被删除

[jinghang@hadoop102 hadoop-2.7.2]$ touch kongming.txt
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs  -moveFromLocal  ./kongming.txt  /sanguo/shuguo

(6)-appendToFile:追加一个文件到已经存在的文件末尾
用法:hadoop fs -appendToFile
功能:将一本地文件中的内容拼接在hdfs文件中

[jinghang@hadoop102 hadoop-2.7.2]$ touch liubei.txt
[jinghang@hadoop102 hadoop-2.7.2]$ vi liubei.txt

输入
san gu mao lu

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -appendToFile liubei.txt /sanguo/shuguo/kongming.txt

(6)-cat:显示文件内容

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -cat /sanguo/shuguo/kongming.txt

(7)-chmod、-chown:Linux文件系统中的用法一样,修改文件所属权限、
用法:hadoop fs -chown 用户名:组名
功能:修改文件或目录所属用户和组,递归加参数-R,chmod

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs  -chmod  666  /sanguo/shuguo/kongming.txt
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs  -chown  jinghang:jinghang   /sanguo/shuguo/kongming.txt

(8)-copyFromLocal:从本地文件系统中拷贝文件到HDFS路径去
用法:hadoop fs -copyFromLocal
功能:与put相类似

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -copyFromLocal README.txt /

(9)-copyToLocal:从HDFS拷贝到本地
用法:hadoop fs -copyToLocal
功能:与get相类似

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -copyToLocal /sanguo/shuguo/kongming.txt ./

(10)-cp :从HDFS的一个路径拷贝到HDFS的另一个路径
用法:hadoop fs -cp
功能:目标文件不能存在,否则命令不能执行,相当于给文件重命名并保存,源文件还存在

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -cp /sanguo/shuguo/kongming.txt /zhuge.txt

(11)-mv:在HDFS目录中移动文件
用法:hadoop fs -mv
功能:目标文件不能存在,否则命令不能执行,相当于给文件重命名并保存,源文件不存在

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -mv /zhuge.txt /sanguo/shuguo/

(12)-get:等同于copyToLocal,就是从HDFS下载文件到本地
用法:hadoop fs -get
功能:local file不能和 hdfs file名字不能相同,否则会提示文件已存在,没有重名的文件会复制到本地

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -get /sanguo/shuguo/kongming.txt ./

(13)-getmerge:合并下载多个文件,比如HDFS的目录 /user/jinghang/test下有多个文件:log.1, log.2,log.3,…

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -getmerge /user/jinghang/test/* ./zaiyiqi.txt

(14)-put:等同于copyFromLocal
用法:hadoop fs -put
功能:hdfs file的父目录一定要存在,否则命令不会执行

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -put ./zaiyiqi.txt /user/jinghang/test/

(15)-tail:显示一个文件的末尾
用法:hadoop fs -tail
功能:查看大文件后10行

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -tail -f /sanguo/shuguo/kongming.txt

(16)-rm:删除文件或文件夹
用法1:hadoop fs -rm
功能:删除文件
用法2:hadoop fs -rm -r
功能:删除目录

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -rm /user/jinghang/test/jinlian2.txt

(17)-rmdir:删除空目录

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir /test
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -rmdir /test

(18)-du统计文件夹的大小信息

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -du -s -h /user/jinghang/test
 2.7 K /user/jinghang/test

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -du  -h /user/jinghang/test

1.3 K  /user/jinghang/test/README.txt
15     /user/jinghang/test/jinlian.txt
1.4 K  /user/jinghang/test/zaiyiqi.txt

(19)-setrep:设置HDFS中文件的副本数量

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -setrep 10 /wcinput/input.txt

在这里插入图片描述

					 图3-3  HDFS副本数量

这里设置的副本数只是记录在NameNode的元数据中,是否真的会有这么多副本,还得看DataNode的数量。因为目前只有3台设备,最多也就3个副本,只有节点数的增加到10台时,副本数才能达到10。

第3章 HDFS客户端操作(开发重点)

3.1 HDFS客户端环境准备(使用IDEA)
1.根据自己电脑的操作系统拷贝对应的编译后的hadoop jar包到非中文路径(例如:D:\Develop\hadoop-2.7.2),如图3-4所示。
在这里插入图片描述

			图3-4  编译后的hadoop jar包

2.配置HADOOP_HOME环境变量,如图3-5所示。
在这里插入图片描述

			图3-5  配置HADOOP_HOME环境变量
  1. 配置Path环境变量,如图3-6所示。
    在这里插入图片描述

     		      图3-6  配置Path环境变量
    

4.创建一个Maven工程HdfsClientDemo
5.导入相应的依赖坐标+日志添加

<dependencies>
		<dependency>
			<groupId>junit</groupId>
			<artifactId>junit</artifactId>
			<version>RELEASE</version>
		</dependency>
		<dependency>
			<groupId>org.apache.logging.log4j</groupId>
			<artifactId>log4j-core</artifactId>
			<version>2.8.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-common</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-client</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-hdfs</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>jdk.tools</groupId>
			<artifactId>jdk.tools</artifactId>
			<version>1.8</version>
			<scope>system</scope>
			<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
		</dependency>
</dependencies>

注意:如果Eclipse/Idea打印不出日志,在控制台上只显示

1.log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).  
2.log4j:WARN Please initialize the log4j system properly.  
3.log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

需要在项目的src/main/resources目录下,新建一个文件,命名为

“log4j.properties”,在文件中填入
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

6.创建包名:com.jinghang.hdfs
7.创建HdfsClient类

public class HdfsClient{	
@Test
public void testMkdirs() throws IOException, InterruptedException, URISyntaxException{
		
		// 1 获取文件系统
		Configuration configuration = new Configuration();
		// 配置在集群上运行
		// configuration.set("fs.defaultFS", "hdfs://hadoop102:9000");
		// FileSystem fs = FileSystem.get(configuration);

		FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");
		
		// 2 创建目录
	
		fs.mkdirs(new Path("/1108/daxian/banzhang"));
		
		// 3 关闭资源
			fs.close();
			}
		}

3.2 HDFS的API操作
3.2.1 HDFS文件上传(测试参数优先级)
1.编写源代码

@Test
public void testCopyFromLocalFile() throws IOException, InterruptedException, URISyntaxException {

		// 1 获取文件系统
		Configuration configuration = new Configuration();
		configuration.set("dfs.replication", "2");
		FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");

		// 2 上传文件
		fs.copyFromLocalFile(new Path("e:/banzhang.txt"), new Path("/banzhang.txt"));

		// 3 关闭资源
		fs.close();

		System.out.println("over");
}

2.将hdfs-site.xml拷贝到项目的根目录下

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
	<property>
		<name>dfs.replication</name>
        <value>1</value>
	</property>
</configuration>

3.参数优先级
参数优先级排序:(1)客户端代码中设置的值 >(2)ClassPath下的用户自定义配置文件 >(3)然后是服务器的默认配置
3.2.2 HDFS文件下载

@Test
public void testCopyToLocalFile() throws IOException, InterruptedException, URISyntaxException{

		// 1 获取文件系统
		Configuration configuration = new Configuration();
		FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");
		
		// 2 执行下载操作
		// boolean delSrc 指是否将原文件删除
		// Path src 指要下载的文件路径
		// Path dst 指将文件下载到的路径
		// boolean useRawLocalFileSystem 是否开启文件校验
		fs.copyToLocalFile(false, new Path("/banzhang.txt"), new Path("e:/banhua.txt"), true);
		
		// 3 关闭资源
		fs.close();
}

3.2.3 HDFS文件夹删除

@Test
public void testDelete() throws IOException, InterruptedException, URISyntaxException{

	// 1 获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");
		
	// 2 执行删除
	fs.delete(new Path("/0508/"), true);
		
	// 3 关闭资源
	fs.close();
}

3.2.4 HDFS文件名更改

@Test
public void testRename() throws IOException, InterruptedException, URISyntaxException{

	// 1 获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang"); 
		
	// 2 修改文件名称
	fs.rename(new Path("/banzhang.txt"), new Path("/banhua.txt"));
		
	// 3 关闭资源
	fs.close();
}

3.2.5 HDFS文件详情查看
查看文件名称、权限、长度、块信息

@Test
public void testListFiles() throws IOException, InterruptedException, URISyntaxException{

	// 1获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang"); 
		
	// 2 获取文件详情
	RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);
		
	while(listFiles.hasNext()){
		LocatedFileStatus status = listFiles.next();
			
		// 输出详情
		// 文件名称
		System.out.println(status.getPath().getName());
		// 长度
		System.out.println(status.getLen());
		// 权限
		System.out.println(status.getPermission());
		// 分组
		System.out.println(status.getGroup());
			
		// 获取存储的块信息
		BlockLocation[] blockLocations = status.getBlockLocations();
			
		for (BlockLocation blockLocation : blockLocations) {
				
			// 获取块存储的主机节点
			String[] hosts = blockLocation.getHosts();
				
			for (String host : hosts) {
				System.out.println(host);
			}
		}
			
		System.out.println("-----------班长的分割线----------");
	}

// 3 关闭资源
fs.close();
}

3.2.6 HDFS文件和文件夹判断

@Test
public void testListStatus() throws IOException, InterruptedException, URISyntaxException{
		
	// 1 获取文件配置信息
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");
		
	// 2 判断是文件还是文件夹
	FileStatus[] listStatus = fs.listStatus(new Path("/"));
		
	for (FileStatus fileStatus : listStatus) {
		
		// 如果是文件
		if (fileStatus.isFile()) {
				System.out.println("f:"+fileStatus.getPath().getName());
			}else {
				System.out.println("d:"+fileStatus.getPath().getName());
			}
		}
		
	// 3 关闭资源
	fs.close();
}

3.3 HDFS的I/O流操作(扩展)
上面我们学的API操作HDFS系统都是框架封装好的。那么如果我们想自己实现上述API的操作该怎么实现呢?
我们可以采用IO流的方式实现数据的上传和下载。
3.3.1 HDFS文件上传
1.需求:把本地e盘上的banhua.txt文件上传到HDFS根目录
2.编写代码

@Test
public void putFileToHDFS() throws IOException, InterruptedException, URISyntaxException {

	// 1 获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");

	// 2 创建输入流
	FileInputStream fis = new FileInputStream(new File("e:/banhua.txt"));

	// 3 获取输出流
	FSDataOutputStream fos = fs.create(new Path("/banhua.txt"));

	// 4 流对拷
	IOUtils.copyBytes(fis, fos, configuration);

	// 5 关闭资源
	IOUtils.closeStream(fos);
	IOUtils.closeStream(fis);
    fs.close();
}

3.3.2 HDFS文件下载
1.需求:从HDFS上下载banhua.txt文件到本地e盘上
2.编写代码

// 文件下载
@Test
public void getFileFromHDFS() throws IOException, InterruptedException, URISyntaxException{

	// 1 获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");
		
	// 2 获取输入流
	FSDataInputStream fis = fs.open(new Path("/banhua.txt"));
		
	// 3 获取输出流
	FileOutputStream fos = new FileOutputStream(new File("e:/banhua.txt"));
		
	// 4 流的对拷
	IOUtils.copyBytes(fis, fos, configuration);
		
	// 5 关闭资源
	IOUtils.closeStream(fos);
	IOUtils.closeStream(fis);
	fs.close();
}

3.3.3 定位文件读取
1.需求:分块读取HDFS上的大文件,比如根目录下的/hadoop-2.7.2.tar.gz
2.编写代码
(1)下载第一块

@Test
public void readFileSeek1() throws IOException, InterruptedException, URISyntaxException{

	// 1 获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");
		
	// 2 获取输入流
	FSDataInputStream fis = fs.open(new Path("/hadoop-2.7.2.tar.gz"));
		
	// 3 创建输出流
	FileOutputStream fos = new FileOutputStream(new File("e:/hadoop-2.7.2.tar.gz.part1"));
		
	// 4 流的拷贝
	byte[] buf = new byte[1024];
		
	for(int i =0 ; i < 1024 * 128; i++){
		fis.read(buf);
		fos.write(buf);
	}
		
	// 5关闭资源
	IOUtils.closeStream(fis);
	IOUtils.closeStream(fos);
fs.close();
}

(2)下载第二块

@Test
public void readFileSeek2() throws IOException, InterruptedException, URISyntaxException{

	// 1 获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "jinghang");
		
	// 2 打开输入流
	FSDataInputStream fis = fs.open(new Path("/hadoop-2.7.2.tar.gz"));
		
	// 3 定位输入数据位置
	fis.seek(1024*1024*128);
		
	// 4 创建输出流
	FileOutputStream fos = new FileOutputStream(new File("e:/hadoop-2.7.2.tar.gz.part2"));
		
	// 5 流的对拷
	IOUtils.copyBytes(fis, fos, configuration);
		
	// 6 关闭资源
	IOUtils.closeStream(fis);
	IOUtils.closeStream(fos);
}

(3)合并文件
在Window命令窗口中进入到目录E:\,然后执行如下命令,对数据进行合并
type hadoop-2.7.2.tar.gz.part2 >> hadoop-2.7.2.tar.gz.part1
合并完成后,将hadoop-2.7.2.tar.gz.part1重新命名为hadoop-2.7.2.tar.gz。解压发现该tar包非常完整。

第4章 HDFS的数据流(面试重点)

4.1 HDFS写数据流程
4.1.1 剖析文件写入
HDFS写数据流程,如图3-8所示。
在这里插入图片描述

						图3-8  配置用户名称

1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
2)NameNode返回是否可以上传。
3)客户端请求第一个 Block上传到哪几个DataNode服务器上。
4)NameNode返回3个DataNode节点,分别为dn1、dn2、dn3。
5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
6)dn1、dn2、dn3逐级应答客户端。
7)客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。
8)当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。

4.1.2 网络拓扑-节点距离计算
在HDFS写数据的过程中,NameNode会选择距离待上传数据最近距离的DataNode接收数据。那么这个最近距离怎么计算呢?
节点距离:两个节点到达最近的共同祖先的距离总和。
在这里插入图片描述

					图3-9  网络拓扑概念

例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,这里给出四种距离描述,如图3-9所示。
大家算一算每两个节点之间的距离,如图3-10所示。
在这里插入图片描述

						图3-10  网络拓扑

4.1.3 机架感知(副本存储节点选择)
在这里插入图片描述
1. 官方ip地址
机架感知说明
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Replication
For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica on one node in the local rack, another on a different node in the local rack, and the last on a different node in a different rack.

2. Hadoop2.7.2副本节点选择
在这里插入图片描述
4.2 HDFS读数据流程
在这里插入图片描述

						图3-13  HDFS读数据流程

1)客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)。
4)客户端以Packet为单位接收,先在本地缓存,然后写入目标文件。
第5章 NameNode和SecondaryNameNode(面试开发重点)
5.1 NN和2NN工作机制
思考:NameNode中的元数据是存储在哪里的?
首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的FsImage。
这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。
但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并。

NN和2NN工作机制,如图3-14所示。
在这里插入图片描述

					图3-14  NN和2NN工作机制

1. 第一阶段:NameNode启动
(1)第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
(2)客户端对元数据进行增删改的请求。
(3)NameNode记录操作日志,更新滚动日志。
(4)NameNode在内存中对元数据进行增删改。
2. 第二阶段:Secondary NameNode工作
(1)Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。
(2)Secondary NameNode请求执行CheckPoint。
(3)NameNode滚动正在写的Edits日志。
(4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
(5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
(6)生成新的镜像文件fsimage.chkpoint。
(7)拷贝fsimage.chkpoint到NameNode。
(8)NameNode将fsimage.chkpoint重新命名成fsimage。
NN和2NN工作机制详解:
Fsimage:NameNode内存中元数据序列化后形成的文件。
Edits:记录客户端更新元数据信息的每一步操作(可通过Edits运算出元数据)。
NameNode启动时,先滚动Edits并生成一个空的edits.inprogress,然后加载Edits和Fsimage到内存中,此时NameNode内存就持有最新的元数据信息。Client开始对NameNode发送元数据的增删改的请求,这些请求的操作首先会被记录到edits.inprogress中(查询元数据的操作不会被记录在Edits中,因为查询操作不会更改元数据信息),如果此时NameNode挂掉,重启后会从Edits中读取元数据的信息。然后,NameNode会在内存中执行元数据的增删改的操作。
由于Edits中记录的操作会越来越多,Edits文件会越来越大,导致NameNode在启动加载Edits时会很慢,所以需要对Edits和Fsimage进行合并(所谓合并,就是将Edits和Fsimage加载到内存中,照着Edits中的操作一步步执行,最终形成新的Fsimage)。SecondaryNameNode的作用就是帮助NameNode进行Edits和Fsimage的合并工作。
SecondaryNameNode首先会询问NameNode是否需要CheckPoint(触发CheckPoint需要满足两个条件中的任意一个,定时时间到和Edits中数据写满了)。直接带回NameNode是否检查结果。SecondaryNameNode执行CheckPoint操作,首先会让NameNode滚动Edits并生成一个空的edits.inprogress,滚动Edits的目的是给Edits打个标记,以后所有新的操作都写入edits.inprogress,其他未合并的Edits和Fsimage会拷贝到SecondaryNameNode的本地,然后将拷贝的Edits和Fsimage加载到内存中进行合并,生成fsimage.chkpoint,然后将fsimage.chkpoint拷贝给NameNode,重命名为Fsimage后替换掉原来的Fsimage。NameNode在启动时就只需要加载之前未合并的Edits和Fsimage即可,因为合并过的Edits中的元数据信息已经被记录在Fsimage中。

5.2 Fsimage和Edits解析
1. 概念
在这里插入图片描述
2. oiv查看Fsimage文件
(1)查看oiv和oev命令

[jinghang@hadoop102 current]$ hdfs
oiv            apply the offline fsimage viewer to an fsimage
oev            apply the offline edits viewer to an edits file

(2)基本语法
hdfs oiv -p 文件类型 -i镜像文件 -o 转换后文件输出路径
(3)案例实操

[jinghang@hadoop102 current]$ pwd
/opt/module/hadoop-2.7.2/data/tmp/dfs/name/current


[jinghang@hadoop102 current]$ hdfs oiv -p XML -i fsimage_0000000000000000025 -o /opt/module/hadoop-2.7.2/fsimage.xml

[jinghang@hadoop102 current]$ cat /opt/module/hadoop-2.7.2/fsimage.xml

将显示的xml文件内容拷贝到Eclipse中创建的xml文件中,并格式化。部分显示结果如下。

<inode>
	<id>16386</id>
	<type>DIRECTORY</type>
	<name>user</name>
	<mtime>1512722284477</mtime>
	<permission>jinghang:supergroup:rwxr-xr-x</permission>
	<nsquota>-1</nsquota>
	<dsquota>-1</dsquota>
</inode>
<inode>
	<id>16387</id>
	<type>DIRECTORY</type>
	<name>jinghang</name>
	<mtime>1512790549080</mtime>
	<permission>jinghang:supergroup:rwxr-xr-x</permission>
	<nsquota>-1</nsquota>
	<dsquota>-1</dsquota>
</inode>
<inode>
	<id>16389</id>
	<type>FILE</type>
	<name>wc.input</name>
	<replication>3</replication>
	<mtime>1512722322219</mtime>
	<atime>1512722321610</atime>
	<perferredBlockSize>134217728</perferredBlockSize>
	<permission>jinghang:supergroup:rw-r--r--</permission>
	<blocks>
		<block>
			<id>1073741825</id>
			<genstamp>1001</genstamp>
			<numBytes>59</numBytes>
		</block>
	</blocks>
</inode >

思考:可以看出,Fsimage中没有记录块所对应DataNode,为什么?
在集群启动后,要求DataNode上报数据块信息,并间隔一段时间后再次上报。

3. oev查看Edits文件
(1)基本语法
hdfs oev -p 文件类型 -i编辑日志 -o 转换后文件输出路径
(2)案例实操

[jinghang@hadoop102 current]$ hdfs oev -p XML -i edits_0000000000000000012-0000000000000000013 -o /opt/module/hadoop-2.7.2/edits.xml

[jinghang@hadoop102 current]$ cat /opt/module/hadoop-2.7.2/edits.xml

将显示的xml文件内容拷贝到Eclipse中创建的xml文件中,并格式化。显示结果如下。

<?xml version="1.0" encoding="UTF-8"?>
<EDITS>
	<EDITS_VERSION>-63</EDITS_VERSION>
	<RECORD>
		<OPCODE>OP_START_LOG_SEGMENT</OPCODE>
		<DATA>
			<TXID>129</TXID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ADD</OPCODE>
		<DATA>
			<TXID>130</TXID>
			<LENGTH>0</LENGTH>
			<INODEID>16407</INODEID>
			<PATH>/hello7.txt</PATH>
			<REPLICATION>2</REPLICATION>
			<MTIME>1512943607866</MTIME>
			<ATIME>1512943607866</ATIME>
			<BLOCKSIZE>134217728</BLOCKSIZE>
			<CLIENT_NAME>DFSClient_NONMAPREDUCE_-1544295051_1</CLIENT_NAME>
			<CLIENT_MACHINE>192.168.1.5</CLIENT_MACHINE>
			<OVERWRITE>true</OVERWRITE>
			<PERMISSION_STATUS>
				<USERNAME>jinghang</USERNAME>
				<GROUPNAME>supergroup</GROUPNAME>
				<MODE>420</MODE>
			</PERMISSION_STATUS>
			<RPC_CLIENTID>908eafd4-9aec-4288-96f1-e8011d181561</RPC_CLIENTID>
			<RPC_CALLID>0</RPC_CALLID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ALLOCATE_BLOCK_ID</OPCODE>
		<DATA>
			<TXID>131</TXID>
			<BLOCK_ID>1073741839</BLOCK_ID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_SET_GENSTAMP_V2</OPCODE>
		<DATA>
			<TXID>132</TXID>
			<GENSTAMPV2>1016</GENSTAMPV2>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ADD_BLOCK</OPCODE>
		<DATA>
			<TXID>133</TXID>
			<PATH>/hello7.txt</PATH>
			<BLOCK>
				<BLOCK_ID>1073741839</BLOCK_ID>
				<NUM_BYTES>0</NUM_BYTES>
				<GENSTAMP>1016</GENSTAMP>
			</BLOCK>
			<RPC_CLIENTID></RPC_CLIENTID>
			<RPC_CALLID>-2</RPC_CALLID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_CLOSE</OPCODE>
		<DATA>
			<TXID>134</TXID>
			<LENGTH>0</LENGTH>
			<INODEID>0</INODEID>
			<PATH>/hello7.txt</PATH>
			<REPLICATION>2</REPLICATION>
			<MTIME>1512943608761</MTIME>
			<ATIME>1512943607866</ATIME>
			<BLOCKSIZE>134217728</BLOCKSIZE>
			<CLIENT_NAME></CLIENT_NAME>
			<CLIENT_MACHINE></CLIENT_MACHINE>
			<OVERWRITE>false</OVERWRITE>
			<BLOCK>
				<BLOCK_ID>1073741839</BLOCK_ID>
				<NUM_BYTES>25</NUM_BYTES>
				<GENSTAMP>1016</GENSTAMP>
			</BLOCK>
			<PERMISSION_STATUS>
				<USERNAME>jinghang</USERNAME>
				<GROUPNAME>supergroup</GROUPNAME>
				<MODE>420</MODE>
			</PERMISSION_STATUS>
		</DATA>
	</RECORD>
</EDITS >

思考:NameNode如何确定下次开机启动的时候合并哪些Edits?

5.3 CheckPoint时间设置
(1)通常情况下,SecondaryNameNode每隔一小时执行一次。
[hdfs-default.xml]

<property>
  <name>dfs.namenode.checkpoint.period</name>
  <value>3600</value>
</property>

(2)一分钟检查一次操作次数,3当操作次数达到1百万时,SecondaryNameNode执行一次。

<property>
  <name>dfs.namenode.checkpoint.txns</name>
  <value>1000000</value>
<description>操作动作次数</description>
</property>

<property>
  <name>dfs.namenode.checkpoint.check.period</name>
  <value>60</value>
<description> 1分钟检查一次操作次数</description>
</property >

5.4 NameNode故障处理
NameNode故障后,可以采用如下两种方法恢复数据。
方法一: 将SecondaryNameNode中数据拷贝到NameNode存储数据的目录;

  1. kill -9 NameNode进程
  2. 删除NameNode存储的数据(/opt/module/hadoop-2.7.2/data/tmp/dfs/name)
[jinghang@hadoop102 hadoop-2.7.2]$ rm -rf /opt/module/hadoop-2.7.2/data/tmp/dfs/name/*
  1. 拷贝SecondaryNameNode中数据到原NameNode存储数据目录
[jinghang@hadoop102 dfs]$ scp -r jinghang@hadoop104:/opt/module/hadoop-2.7.2/data/tmp/dfs/namesecondary/* ./name/
  1. 重新启动NameNode
[jinghang@hadoop102 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode

方法二: 使用-importCheckpoint选项启动NameNode守护进程,从而将SecondaryNameNode中数据拷贝到NameNode目录中。
1.修改hdfs-site.xml中的

<property>
  <name>dfs.namenode.checkpoint.period</name>
  <value>120</value>
</property>

<property>
  <name>dfs.namenode.name.dir</name>
  <value>/opt/module/hadoop-2.7.2/data/tmp/dfs/name</value>
</property>
  1. kill -9 NameNode进程
  2. 删除NameNode存储的数据(/opt/module/hadoop-2.7.2/data/tmp/dfs/name)
[jinghang@hadoop102 hadoop-2.7.2]$ rm -rf /opt/module/hadoop-2.7.2/data/tmp/dfs/name/*
  1. 如果SecondaryNameNode不和NameNode在一个主机节点上,需要将SecondaryNameNode存储数据的目录拷贝到NameNode存储数据的平级目录,并删除in_use.lock文件
[jinghang@hadoop102 dfs]$ scp -r jinghang@hadoop104:/opt/module/hadoop-2.7.2/data/tmp/dfs/namesecondary ./

[jinghang@hadoop102 namesecondary]$ rm -rf in_use.lock

[jinghang@hadoop102 dfs]$ pwd
/opt/module/hadoop-2.7.2/data/tmp/dfs

[jinghang@hadoop102 dfs]$ ls
data  name  namesecondary
  1. 导入检查点数据(等待一会ctrl+c结束掉)
[jinghang@hadoop102 hadoop-2.7.2]$ bin/hdfs namenode -importCheckpoint
  1. 启动NameNode
[jinghang@hadoop102 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode

5.5 集群安全模式

1. 概述
在这里插入图片描述
2.基本语法
集群处于安全模式,不能执行重要操作(写操作)。集群启动完成后,自动退出安全模式。
(1)bin/hdfs dfsadmin -safemode get (功能描述:查看安全模式状态)
(2)bin/hdfs dfsadmin -safemode enter (功能描述:进入安全模式状态)
(3)bin/hdfs dfsadmin -safemode leave (功能描述:离开安全模式状态)
(4)bin/hdfs dfsadmin -safemode wait (功能描述:等待安全模式状态)
3. 案例
模拟等待安全模式
(1)查看当前模式

[jinghang@hadoop102 hadoop-2.7.2]$ hdfs dfsadmin -safemode get
Safe mode is OFF

(2)先进入安全模式

[jinghang@hadoop102 hadoop-2.7.2]$ bin/hdfs dfsadmin -safemode enter
**(3)创建并执行下面的脚本**

在/opt/module/hadoop-2.7.2路径上,编辑一个脚本safemode.sh

[jinghang@hadoop102 hadoop-2.7.2]$ touch safemode.sh
[jinghang@hadoop102 hadoop-2.7.2]$ vim safemode.sh


#!/bin/bash
hdfs dfsadmin -safemode wait
hdfs dfs -put /opt/module/hadoop-2.7.2/README.txt /

[jinghang@hadoop102 hadoop-2.7.2]$ chmod 777 safemode.sh

[jinghang@hadoop102 hadoop-2.7.2]$ ./safemode.sh 

(4)再打开一个窗口,执行

[jinghang@hadoop102 hadoop-2.7.2]$ bin/hdfs dfsadmin -safemode leave

(5)观察
(a)再观察上一个窗口

Safe mode is OFF

(b)HDFS集群上已经有上传的数据了。

第6章 DataNode(面试开发重点)

6.1 DataNode工作机制
DataNode工作机制,如图3-15所示。
在这里插入图片描述

					图3-15  DataNode工作机制

1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。
2)DataNode启动后向NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。
3)心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。
4)集群运行中可以安全加入和退出一些机器。
6.2 数据完整性
思考:如果电脑磁盘里面存储的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0),但是存储该数据的磁盘坏了,一直显示是绿灯,是否很危险?同理DataNode节点上的数据损坏了,却没有发现,是否也很危险,那么如何解决呢?
如下是DataNode节点保证数据完整性的方法。
1)当DataNode读取Block的时候,它会计算CheckSum。
2)如果计算后的CheckSum,与Block创建时值不一样,说明Block已经损坏。
3)Client读取其他DataNode上的Block。
4)DataNode在其文件创建后周期验证CheckSum,如图3-16所示。
在这里插入图片描述

						图3-16  校验和

6.3 掉线时限参数设置
在这里插入图片描述
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。

<property>
    <name>dfs.namenode.heartbeat.recheck-interval</name>
    <value>300000</value>
</property>
<property>
    <name>dfs.heartbeat.interval</name>
    <value>3</value>
</property>

6.4 服役新数据节点
0. 需求
随着公司业务的增长,数据量越来越大,原有的数据节点的容量已经不能满足存储数据的需求,需要在原有集群基础上动态添加新的数据节点。
1. 环境准备
(1)在hadoop104主机上再克隆一台hadoop105主机
(2)修改IP地址和主机名称
(3)删除原来HDFS文件系统留存的文件(/opt/module/hadoop-2.7.2/data和log)
(4)source一下配置文件

[jinghang@hadoop105 hadoop-2.7.2]$ source /etc/profile

2. 服役新节点具体步骤
(1)直接启动DataNode,即可关联到集群

[jinghang@hadoop105 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode
[jinghang@hadoop105 hadoop-2.7.2]$ sbin/yarn-daemon.sh start nodemanager

在这里插入图片描述
(2)在hadoop105上上传文件

[jinghang@hadoop105 hadoop-2.7.2]$ hadoop fs -put /opt/module/hadoop-2.7.2/LICENSE.txt /

(3)如果数据不均衡,可以用命令实现集群的再平衡

[jinghang@hadoop102 sbin]$ ./start-balancer.sh
starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-jinghang-balancer-hadoop102.out
Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  Bytes Being Moved

6.5 退役旧数据节点

6.5.1 添加白名单
添加到白名单的主机节点,都允许访问NameNode,不在白名单的主机节点,都会被退出。
配置白名单的具体步骤如下:
(1)在NameNode的**/opt/module/hadoop-2.7.2/etc/hadoop目录下创建dfs.hosts**文件

[jinghang@hadoop102 hadoop]$ pwd
/opt/module/hadoop-2.7.2/etc/hadoop
[jinghang@hadoop102 hadoop]$ touch dfs.hosts
[jinghang@hadoop102 hadoop]$ vi dfs.hosts

添加如下主机名称(不添加hadoop105)

hadoop102
hadoop103
hadoop104

(2)在NameNode的hdfs-site.xml配置文件中增加dfs.hosts属性

<property>
<name>dfs.hosts</name>
<value>/opt/module/hadoop-2.7.2/etc/hadoop/dfs.hosts</value>
</property>

(3)配置文件分发

[jinghang@hadoop102 hadoop]$ xsync hdfs-site.xml

(4)刷新NameNode

[jinghang@hadoop102 hadoop-2.7.2]$ hdfs dfsadmin -refreshNodes
Refresh nodes successful

(5)更新ResourceManager节点

[jinghang@hadoop102 hadoop-2.7.2]$ yarn rmadmin -refreshNodes
17/06/24 14:17:11 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.1.103:8033

(6)在web浏览器上查看
在这里插入图片描述

4. 如果数据不均衡,可以用命令实现集群的再平衡

[jinghang@hadoop102 sbin]$ ./start-balancer.sh
starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-jinghang-balancer-hadoop102.out
Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  Bytes Being Moved

6.5.2 黑名单退役
在黑名单上面的主机都会被强制退出。
1.在NameNode的**/opt/module/hadoop-2.7.2/etc/hadoop目录下创建dfs.hosts.exclude**文件

[jinghang@hadoop102 hadoop]$ pwd
/opt/module/hadoop-2.7.2/etc/hadoop
[jinghang@hadoop102 hadoop]$ touch dfs.hosts.exclude
[jinghang@hadoop102 hadoop]$ vi dfs.hosts.exclude

添加如下主机名称(要退役的节点)

hadoop105

2.在NameNode的hdfs-site.xml配置文件中增加dfs.hosts.exclude属性

<property>
<name>dfs.hosts.exclude</name>
      <value>/opt/module/hadoop-2.7.2/etc/hadoop/dfs.hosts.exclude</value>
</property>

3.刷新NameNode、刷新ResourceManager

[jinghang@hadoop102 hadoop-2.7.2]$ hdfs dfsadmin -refreshNodes
Refresh nodes successful

[jinghang@hadoop102 hadoop-2.7.2]$ yarn rmadmin -refreshNodes
17/06/24 14:55:56 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.1.103:8033
  1.  检查Web浏览器,退役节点的状态为decommission in progress(退役中),说明数据节点正在复制块到其他节点,如图3-17所示
    

在这里插入图片描述

						图3-17  退役中

5.等待退役节点状态为decommissioned(所有块已经复制完成),停止该节点及节点资源管理器。注意:如果副本数是3,服役的节点小于等于3,是不能退役成功的,需要修改副本数后才能退役,如图3-18所示
在这里插入图片描述

						图3-18 已退役
[jinghang@hadoop105 hadoop-2.7.2]$ sbin/hadoop-daemon.sh stop datanode
stopping datanode
[jinghang@hadoop105 hadoop-2.7.2]$ sbin/yarn-daemon.sh stop nodemanager
stopping nodemanager
  1. 如果数据不均衡,可以用命令实现集群的再平衡
[jinghang@hadoop102 hadoop-2.7.2]$ sbin/start-balancer.sh 
starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-jinghang-balancer-hadoop102.out
Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  Bytes Being Moved
**注意:不允许白名单和黑名单中同时出现同一个主机名称。**

6.6 Datanode多目录配置

  1. DataNode也可以配置成多个目录,每个目录存储的数据不一样。即:数据不是副本
    2.具体配置如下
    hdfs-site.xml
<property>
        <name>dfs.datanode.data.dir</name>
<value>file:///${hadoop.tmp.dir}/dfs/data1,file:///${hadoop.tmp.dir}/dfs/data2</value>
</property>

第7章 HDFS 2.X新特性

7.1 集群间数据拷贝
1.scp实现两个远程主机之间的文件复制

	scp -r hello.txt root@hadoop103:/user/jinghang/hello.txt		// 推 push
	scp -r root@hadoop103:/user/jinghang/hello.txt  hello.txt		// 拉 pull
	scp -r root@hadoop103:/user/jinghang/hello.txt root@hadoop104:/user/jinghang   //是通过本地主机中转实现两个远程主机的文件复制;如果在两个远程主机之间ssh没有配置的情况下可以使用该方式。

2.采用distcp命令实现两个Hadoop集群之间的递归数据复制

[jinghang@hadoop102 hadoop-2.7.2]$  bin/hadoop distcp
hdfs://haoop102:9000/user/jinghang/hello.txt hdfs://hadoop103:9000/user/jinghang/hello.txt

7.2 小文件存档
在这里插入图片描述

3.案例实操
(1)需要启动YARN进程

[jinghang@hadoop102 hadoop-2.7.2]$ start-yarn.sh

(2)归档文件
把/user/jinghang/input目录里面的所有文件归档成一个叫input.har的归档文件,并把归档后文件存储到/user/jinghang/output路径下。

[jinghang@hadoop102 hadoop-2.7.2]$ bin/hadoop archive -archiveName input.har –p  /user/jinghang/input   /user/jinghang/output

(3)查看归档

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -lsr /user/jinghang/output/input.har
[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -lsr har:///user/jinghang/output/input.har

(4)解归档文件

[jinghang@hadoop102 hadoop-2.7.2]$ hadoop fs -cp har:/// user/jinghang/output/input.har/*    /user/jinghang

第8章 HDFS HA高可用 (后面讲)

8.1 HA概述
1)所谓HA(High Available),即高可用(7*24小时不中断服务)。
2)实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
3)Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
4)NameNode主要在以下两个方面影响HDFS集群
NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启
NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用
HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。

8.2 HDFS-HA工作机制
通过双NameNode消除单点故障

8.2.1 HDFS-HA工作要点

1. 元数据管理方式需要改变
内存中各自保存一份元数据;
Edits日志只有Active状态的NameNode节点可以做写操作;
两个NameNode都可以读取Edits;
共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现);
2. 需要一个状态管理功能模块
实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在NameNode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split现象的发生。
3. 必须保证两个NameNode之间能够ssh无密码登录
4. 隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务
8.2.2 HDFS-HA自动故障转移工作机制

前面学习了使用命令hdfs haadmin -failover手动进行故障转移,在该模式下,即使现役NameNode已经失效,系统也不会自动从现役NameNode转移到待机NameNode,下面学习如何配置部署HA自动进行故障转移。自动故障转移为HDFS部署增加了两个新组件:ZooKeeper和ZKFailoverController(ZKFC)进程,如图3-20所示。ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。HA的自动故障转移依赖于ZooKeeper的以下功能:
1)故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。
2)现役NameNode选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。
ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:
1)健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。
2)ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。
3)基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为Active。故障转移进程与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为Active状态。
在这里插入图片描述

				图3-20 HDFS-HA故障转移机制

8.3 HDFS-HA集群配置
8.3.1 环境准备

1. 修改IP

2. 修改主机名及主机名和IP地址的映射

3. 关闭防火墙

4. ssh免密登录

5. 安装JDK,配置环境变量等

8.3.2 规划集群

					表3-1
hadoop102      	hadoop103  	     hadoop104
NameNode	     NameNode	
JournalNode		JournalNode		JournalNode	
DataNode	     DataNode         DataNode
  ZK		        ZK		         ZK	
	           ResourceManager	
NodeManager		 NodeManager	  NodeManager	

8.3.3 配置Zookeeper集群
1. 集群规划
在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。
2. 解压安装
(1)解压Zookeeper安装包到/opt/module/目录下

[jinghang@hadoop102 software]$ tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/

(2)在/opt/module/zookeeper-3.4.10/这个目录下创建zkData

mkdir -p zkData

(3)重命名**/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfgzoo.cfg**

mv zoo_sample.cfg zoo.cfg

3. 配置zoo.cfg文件
(1)具体配置

dataDir=/opt/module/zookeeper-3.4.10/zkData

增加如下配置

#######################cluster##########################
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888

(2)配置参数解读

Server.A=B:C:D。
A是一个数字,表示这个是第几号服务器;
B是这个服务器的IP地址;
C是这个服务器与集群中的Leader服务器交换信息的端口;
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。

4. 集群操作
(1)在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件
touch myid
添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码
(2)编辑myid文件
vi myid
在文件中添加与server对应的编号:如2
(3)拷贝配置好的zookeeper到其他机器上

scp -r zookeeper-3.4.10/ root@hadoop103.jinghang.com:/opt/app/
scp -r zookeeper-3.4.10/ root@hadoop104.jinghang.com:/opt/app/
并分别修改myid文件中内容为3、4

(4)分别启动zookeeper

[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh start
[root@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh start
[root@hadoop104 zookeeper-3.4.10]# bin/zkServer.sh start

(5)查看状态

[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[root@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: leader
[root@hadoop104 zookeeper-3.4.5]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower

8.3.4 配置HDFS-HA集群

  1. 官方地址:http://hadoop.apache.org/
    2. 在opt目录下创建一个ha文件夹
mkdir ha

3. 将/opt/app/下的 hadoop-2.7.2拷贝到/opt/ha目录下

cp -r hadoop-2.7.2/ /opt/ha/

4. 配置hadoop-env.sh

export JAVA_HOME=/opt/module/jdk1.8.0_144

5. 配置core-site.xml

<configuration>
<!-- 把两个NameNode)的地址组装成一个集群mycluster -->
		<property>
			<name>fs.defaultFS</name>
        	<value>hdfs://mycluster</value>
		</property>

		<!-- 指定hadoop运行时产生文件的存储目录 -->
		<property>
			<name>hadoop.tmp.dir</name>
			<value>/opt/ha/hadoop-2.7.2/data/tmp</value>
		</property>
</configuration>
6.	配置hdfs-site.xml
<configuration>
	<!-- 完全分布式集群名称 -->
	<property>
		<name>dfs.nameservices</name>
		<value>mycluster</value>
	</property>

	<!-- 集群中NameNode节点都有哪些 -->
	<property>
		<name>dfs.ha.namenodes.mycluster</name>
		<value>nn1,nn2</value>
	</property>

	<!-- nn1的RPC通信地址 -->
	<property>
		<name>dfs.namenode.rpc-address.mycluster.nn1</name>
		<value>hadoop102:9000</value>
	</property>

	<!-- nn2的RPC通信地址 -->
	<property>
		<name>dfs.namenode.rpc-address.mycluster.nn2</name>
		<value>hadoop103:9000</value>
	</property>

	<!-- nn1的http通信地址 -->
	<property>
		<name>dfs.namenode.http-address.mycluster.nn1</name>
		<value>hadoop102:50070</value>
	</property>

	<!-- nn2的http通信地址 -->
	<property>
		<name>dfs.namenode.http-address.mycluster.nn2</name>
		<value>hadoop103:50070</value>
	</property>

	<!-- 指定NameNode元数据在JournalNode上的存放位置 -->
	<property>
		<name>dfs.namenode.shared.edits.dir</name>
	<value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/mycluster</value>
	</property>

	<!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
	<property>
		<name>dfs.ha.fencing.methods</name>
		<value>sshfence</value>
	</property>

	<!-- 使用隔离机制时需要ssh无秘钥登录-->
	<property>
		<name>dfs.ha.fencing.ssh.private-key-files</name>
		<value>/home/jinghang/.ssh/id_rsa</value>
	</property>

	<!-- 声明journalnode服务器存储目录-->
	<property>
		<name>dfs.journalnode.edits.dir</name>
		<value>/opt/ha/hadoop-2.7.2/data/jn</value>
	</property>

	<!-- 关闭权限检查-->
	<property>
		<name>dfs.permissions.enable</name>
		<value>false</value>
	</property>

	<!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式-->
	<property>
  		<name>dfs.client.failover.proxy.provider.mycluster</name>
	<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
	</property>
</configuration>

7. 拷贝配置好的hadoop环境到其他节点
8.3.5 启动HDFS-HA集群

  1. 在各个JournalNode节点上,输入以下命令启动journalnode服务
sbin/hadoop-daemon.sh start journalnode
  1. 在[nn1]上,对其进行格式化,并启动
bin/hdfs namenode -format
	sbin/hadoop-daemon.sh start namenode
  1. 在[nn2]上,同步nn1的元数据信息
bin/hdfs namenode -bootstrapStandby
  1. 启动[nn2]
sbin/hadoop-daemon.sh start namenode
  1. 查看web页面显示,如图3-21,3-22所示
    在这里插入图片描述

    			图3-21  hadoop102(standby)
    

在这里插入图片描述

			图3-22  hadoop103(standby)
  1. 在[nn1]上,启动所有datanode
sbin/hadoop-daemons.sh start datanode
  1. 将[nn1]切换为Active

bin/hdfs haadmin -transitionToActive nn1

5.查看是否Active

bin/hdfs haadmin -getServiceState nn1

8.3.6 配置HDFS-HA自动故障转移

1. 具体配置
(1)在hdfs-site.xml中增加

<property>
	<name>dfs.ha.automatic-failover.enabled</name>
	<value>true</value>
</property>

(2)在core-site.xml文件中增加

<property>
	<name>ha.zookeeper.quorum</name>
	<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>

2. 启动
(1)关闭所有HDFS服务:

sbin/stop-dfs.sh

(2)启动Zookeeper集群:

bin/zkServer.sh start

(3)初始化HA在Zookeeper中状态:

bin/hdfs zkfc -formatZK

(4)启动HDFS服务:

sbin/start-dfs.sh

3. 验证
(1)将Active NameNode进程kill

kill -9 namenode的进程id

(2)将Active NameNode机器断开网络

service network stop

8.4 YARN-HA配置

8.4.1 YARN-HA工作机制
1. 官方文档:
http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
2. YARN-HA工作机制,如图3-23所示
在这里插入图片描述

						图3-22  YARN-HA工作机制

8.4.2 配置YARN-HA集群

1. 环境准备
(1)修改IP
(2)修改主机名及主机名和IP地址的映射
(3)关闭防火墙
(4)ssh免密登录
(5)安装JDK,配置环境变量等
(6)配置Zookeeper集群

2. 规划集群

							表3-2
							

hadoop102 			hadoop103  	            hadoop104
NameNode			NameNode	
JournalNode			JournalNode			   JournalNode	
DataNode			DataNode				DataNode
ZK						ZK						ZK
ResourceManager		ResourceManager		
NodeManager			NodeManager				NodeManager	

3. 具体配置
(1)yarn-site.xml

<configuration>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!--启用resourcemanager ha-->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
 
    <!--声明两台resourcemanager的地址-->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop102</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop103</value>
    </property>
 
    <!--指定zookeeper集群的地址--> 
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
    </property>

    <!--启用自动恢复--> 
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
 
    <!--指定resourcemanager的状态信息存储在zookeeper集群--> 
    <property>
        <name>yarn.resourcemanager.store.class</name>     <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>

</configuration>

(2)同步更新其他节点的配置信息
4. 启动hdfs
(1)在各个JournalNode节点上,输入以下命令启动journalnode服务:

sbin/hadoop-daemon.sh start journalnode

(2)在[nn1]上,对其进行格式化,并启动:

bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode

(3)在[nn2]上,同步nn1的元数据信息:

bin/hdfs namenode -bootstrapStandby

(4)启动[nn2]:

sbin/hadoop-daemon.sh start namenode

(5)启动所有DataNode

sbin/hadoop-daemons.sh start datanode

(6)将[nn1]切换为Active

bin/hdfs haadmin -transitionToActive nn1

5. 启动YARN
(1)在hadoop102中执行:

sbin/start-yarn.sh

(2)在hadoop103中执行:

sbin/yarn-daemon.sh start resourcemanager

(3)查看服务状态,如图3-24所示

bin/yarn rmadmin -getServiceState rm1

在这里插入图片描述

					图3-24  YARN的服务状态

8.5 HDFS Federation架构设计

1. NameNode架构的局限性
(1)Namespace(命名空间)的限制
由于NameNode在内存中存储所有的元数据(metadata),因此单个NameNode所能存储的对象(文件+块)数目受到NameNode所在JVM的heap size的限制。50G的heap能够存储20亿(200million)个对象,这20亿个对象支持4000个DataNode,12PB的存储(假设文件平均大小为40MB)。随着数据的飞速增长,存储的需求也随之增长。单个DataNode从4T增长到36T,集群的尺寸增长到8000个DataNode。存储的需求从12PB增长到大于100PB。
(2)隔离问题
由于HDFS仅有一个NameNode,无法隔离各个程序,因此HDFS上的一个实验程序就很有可能影响整个HDFS上运行的程序。
(3)性能的瓶颈
由于是单个NameNode的HDFS架构,因此整个HDFS文件系统的吞吐量受限于单个NameNode的吞吐量。

2. HDFS Federation架构设计,如图3-25所示
能不能有多个NameNode

							表3-3
							

NameNode		NameNode		NameNode	
元数据	         元数据	         元数据
Log		        machine	      电商数据/话单数据

在这里插入图片描述

				 图3-25  HDFS Federation架构设计

3. HDFS Federation应用思考
不同应用可以使用不同NameNode进行数据管理
图片业务、爬虫业务、日志审计业务
Hadoop生态系统中,不同的框架使用不同的NameNode进行管理NameSpace。(隔离性)

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读