剑指offer 33. 判断数组是否为某二叉树的后序遍历

题目描述

剑指offer 33

输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true,否则返回 false。假设输入的数组的任意两个数字都互不相同。

示例 1:
输入: [1,6,3,2,5]
输出: false
示例 2:
输入: [1,3,2,6,5]
输出: true

题目分析

这道题根据二叉搜索树的规则,左子树所有节点值 < 根节点值, 右子树所有节点值 > 根节点值;
根据递归分治的思想。

递归解析:
终止条件: 当 i≥j ,说明此子树节点数量 ≤1 ,无需判别正确性,因此直接返回 true ;
递推工作:
划分左右子树: 遍历后序遍历的 [i,j]区间元素,寻找 第一个大于根节点 的节点,索引记为 m 。此时,可划分出左子树区间 [i,m−1] 、右子树区间 [m,j−1] 、根节点索引 j 。
判断是否为二叉搜索树:
左子树区间 [i,m−1] 内的所有节点都应 < postorder[j] 。而第 1.划分左右子树 步骤已经保证左子树区间的正确性,因此只需要判断右子树区间即可。
右子树区间 [m,j−1] 内的所有节点都应 > postorder[j] 。实现方式为遍历,当遇到 ≤postorder[j] 的节点则跳出;则可通过 p=j 判断是否为二叉搜索树。
返回值: 所有子树都需正确才可判定正确,因此使用 与逻辑符 && 连接。
p=j: 判断 此树 是否正确。
recur(i,m−1) : 判断 此树的左子树 是否正确。
recur(m,j−1): 判断 此树的右子树 是否正确。

//根据二叉搜索树的大小规则,最后一个为根节点,遍历数组,比根节点小的那段是左子树的,比根节点大的那段是右子树的
//递归分治
class Solution {
    public boolean verifyPostorder(int[] postorder) {
        if(postorder.length == 0 || postorder.length == 1) return true; 
        
        int len = postorder.length - 1;
        return recur(postorder, 0, len);
    }
        //right为当前树的根节点
        public boolean recur(int[] postorder, int left, int right){
            //终止条件
            if(left >= right) return true;//表示只有一个节点了,则终止并且返回true;
            //遍历,找到第一个大于根节点的节点
            int p = left;
            //这部分为左子树
            while(postorder[p] < postorder[right]){//与最后一个根节点比
                p++;
            }
            //这部分为右子树,此时的p为右子树的新左left;继续判断后续的是否满足右子树的特点
            int newLeft = p;
            while(postorder[p] > postorder[right]){
                p++;
            }
            //如果p==right,说明左子树、该节点、右子树符合大小规则;则继递归其左子树和右子树
            return p == right && recur(postorder, left, newLeft - 1) && recur(postorder, newLeft, right - 1);
        }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值