Flink大数据实时标签实时ETL --04mysql广播和kafka流合并

1、项目架构

在这里插入图片描述

2、mysql广播和kafka流合并

主要应用于实时流关联广播. 主要应该与实时流关联mysql上规则增加关联性. 我这个类主要是在process() 里面使用. 可以看我继承的BroadcastProcessFunction 方法就会明白.我这个类所使用的地方.为广播process

3、代码

package com.func

import com.bean.BuriedPointDetailBean
import org.apache.flink.api.common.state.MapStateDescriptor
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction
import org.apache.flink.util.Collector
import org.slf4j.LoggerFactory

import scala.collection.immutable._

/**
 * mysql广播和kafka流合并
 */
class BroadcastProcessFunc  extends BroadcastProcessFunction [BuriedPointDetailBean, HashMap[String, Tuple4[String, String, String, String]], BuriedPointDetailBean] {

	// 打印日志类
    private val logger = LoggerFactory.getLogger(classOf[BroadcastProcessFunc])

    /**定义MapStateDescriptor
     * 存储的是 rule的规则原字段 Hashmap: config, label_id: bean
     * */
    val  configDescriptor = new MapStateDescriptor[String, HashMap[String,Tuple4[String, String, String, String]]]("config",classOf[String],classOf[HashMap[String,Tuple4[String, String, String, String]]])

    /**
     * 读取状态,并基于状态,处理事件流中的数据
     * 在这里,从上下文中获取状态,基于获取的状态,对事件流中的数据进行处理
     * @param value 事件流中的数据
     * @param ctx 上下文
     * @param out 输出零条或多条数据
     * @throws Exception 异常
     */
    override def processElement(value: BuriedPointDetailBean,
                                ctx: BroadcastProcessFunction[BuriedPointDetailBean, HashMap[String, Tuple4[String, String, String, String]], BuriedPointDetailBean]#ReadOnlyContext,
                                out: Collector[BuriedPointDetailBean]): Unit = {

        var evenId: String = value.event_id
        //获取状态  HashMap  [event_id ,  bean]
        var broadcastState = ctx.getBroadcastState(configDescriptor)
        var broadcastStateRuleInfo = broadcastState.get("config")//mysql规则数据

        //配置中有此规则,则在该事件中。
        //配置中没有此规则,则丢弃
        if (broadcastStateRuleInfo != null) {
            //value 是event_id
            if(broadcastStateRuleInfo.values.map(_._2).toIterator.contains(evenId)) {
                out.collect(value) //下发下游
            }
            //key是event_id
//            if (broadcastStateUserInfo.contains(evenId)) {
//                out.collect(value)
//            }
        }
    }

    /**
     * 处理广播流中的每一条数据,并更新状态  Hashmap是mysql广播
     * @param value 广播流中的数据,Tuple4你可以用一个bean对象
     * @param ctx 上下文
     * @param out 输出零条或多条数据
     * @throws Exception 异常
     */
    override def processBroadcastElement(value: HashMap[String, Tuple4[String, String, String, String]],
                                         ctx: BroadcastProcessFunction[BuriedPointDetailBean, HashMap[String, Tuple4[String, String, String, String]], BuriedPointDetailBean]#Context,
                                         out: Collector[BuriedPointDetailBean]): Unit = {
        //获取上一条的广播状态 :labelId ,tuple<bean>
        val broadcastState = ctx.getBroadcastState(configDescriptor)

        //清空状态
        broadcastState.clear()
        logger.info("mysql rule init...")
        //获取当前更新状态
        broadcastState.put("config",value)


    }
}

4、说明

要明白一点这里的两个广播是处理两个流的广播。

  1. 一个流processBroadcastElement是处理mysql的流,用于定时加载规则,定时删除规则。
  2. 一个流processElement是用于处理Kafka流,可以是复杂的逻辑,也可以是简单逻辑。自己在的流中写代码处理。
    我的处理逻辑只要判断是否包含,进行一层过滤。contains
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值