2019年10月31日下午,在北京智源大会的“人工智能的数理基础专题论坛”上,学者李千骁做了题为《A Dynamic System Approach To DeepLearning-Approximation,Optimization and Generalization》(即:动力学系统与监督学习中的优化/逼近/泛化的关系探索)的主题演讲。李千骁,新加坡国立大学数学系助理教授,新加坡高性能计算研究院研究员。本次讲座,李千骁从数学中一个非常重要的领域-动力学系统出发,为我们揭开深度学习的优化、逼近以及泛化的面纱,并且为我们展示了他与北京大学、普林斯顿大学、新加坡大学的同事共同研究的成果。以下是智源编辑为大家整理的讲座内容,请大家阅读。
整理:钱小鹅
编辑:王炜强
背景
众所周知,从样本是否标记我们可以将机器学习分为监督学习和无监督学习。监督学习即输入标记样本,通过这些样本训练得到分类器的参数(或者映射关系),最终我们可以用分类器进行数据的回归和分类。那么,如果我们采用(连续)动力学系统来描述,那么基本的监督学习则可以表示为:
F*:X→Y
其中函数的输入为X⊂R^d(比如:图片,时序信息等),输出为(比如:类别,数值预测值等)。
图1:监督学习典型实例
不妨我们考虑输入-输出为K个样本对{x^i,y^i=F(x^i)}_i^K。我们的目标是使用已知的数据逼近X到Y的映射。我们首先定义假设空间H:
回归以及分类的线性模型:
浅层神经网络:
深层神经网络:
简单来说,训练(学习)的过程即是从假设空间中找到最优解F*来逼近,常用的求解损失函数的风险最小化方法我们介绍以下两大类:
Empirical risk minimization(ERM)
Population risk minimization(PRM)
通常情况下,我们想求解的是PRM问题,但是我们只能求解ERM问题,而¯F与F ̃之间的“鸿沟”即为我们常常遇到的泛化问题。
图2:监督学习三个逼近解的关系图释