新加坡国立大学李千骁:动力学系统与监督学习的关系探索

新加坡国立大学李千骁教授在讲座中探讨了动力学系统如何解释深度学习的优化、逼近和泛化问题。他通过微分方程和流向地图的概念,阐述了动力学系统在监督学习中的应用,特别是在平均场最优控制、函数逼近和泛化估计方面提供了新的理论见解。讲座还提及了如何将这些理论应用于深度学习算法,为理解深度学习的内在机制提供了新的视角。
摘要由CSDN通过智能技术生成

2019年10月31日下午,在北京智源大会的“人工智能的数理基础专题论坛”上,学者李千骁做了题为《A Dynamic System Approach To DeepLearning-Approximation,Optimization and Generalization》(即:动力学系统与监督学习中的优化/逼近/泛化的关系探索)的主题演讲。李千骁,新加坡国立大学数学系助理教授,新加坡高性能计算研究院研究员。本次讲座,李千骁从数学中一个非常重要的领域-动力学系统出发,为我们揭开深度学习的优化、逼近以及泛化的面纱,并且为我们展示了他与北京大学、普林斯顿大学、新加坡大学的同事共同研究的成果。以下是智源编辑为大家整理的讲座内容,请大家阅读。

 

整理:钱小鹅

编辑:王炜强

 

背景

众所周知,从样本是否标记我们可以将机器学习分为监督学习和无监督学习。监督学习即输入标记样本,通过这些样本训练得到分类器的参数(或者映射关系),最终我们可以用分类器进行数据的回归和分类。那么,如果我们采用(连续)动力学系统来描述,那么基本的监督学习则可以表示为:

F*:X→Y

其中函数的输入为X⊂R^d(比如:图片,时序信息等),输出为(比如:类别,数值预测值等)。

图1:监督学习典型实例

不妨我们考虑输入-输出为K个样本对{x^i,y^i=F(x^i)}_i^K。我们的目标是使用已知的数据逼近X到Y的映射。我们首先定义假设空间H:

  • 回归以及分类的线性模型:

  • 浅层神经网络:

  • 深层神经网络:

简单来说,训练(学习)的过程即是从假设空间中找到最优解F*来逼近,常用的求解损失函数的风险最小化方法我们介绍以下两大类:

  • Empirical risk minimization(ERM)

  • Population risk minimization(PRM)

通常情况下,我们想求解的是PRM问题,但是我们只能求解ERM问题,而¯F与F ̃之间的“鸿沟”即为我们常常遇到的泛化问题。

图2:监督学习三个逼近解的关系图释

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值