作者:Sergei Ivanov
编译:周寅张皓、梦佳、贾伟
GNN,又可以被理解为Neural Networks for Graph,由于图非欧结构的限制,如何设计图数据上的神经网络一直困扰着学界,因此在数年前该领域一直较为沉寂。
但近年来,深度学习模型的成功将一系列成功验证的机制迁移到图数据上,创造了诸如GCN,Graph Attention,Graph Pooling等等模型。伴随着理论方法进步的,是蓬勃的应用发展。
在2020年,GNN频繁登上各大会议热词榜,由于图类型数据的普遍存在,图神经网络在各种学科的场景得到应用——诸如计算机视觉、推荐系统、组合优化;甚至药物研发、物理、化学等,且在多个领域都有较大的效果提升。
在前几天我们推送了一篇Michael Bronstein 等人对2020年GNN发展的复盘文章:「全方位复盘GNN,12位学者寄望2021年大爆发」。
今天,我们再推荐著名图机器学习专家 Sergei Ivanov 对图机器学习的发展,供大家参考。
Sergei Ivanov:
今年年初,图形神经网络(GNNs)成为一个流行词。作为这一领域的研究人员,我感到非常自豪(至少不感到羞愧) 。但事实并非总是如此: 三年前,当我和同事们交谈时,他们沉迷于GANs 和 Transformers,他们对我印象是,我正在研究一些稀奇古怪的小众问题。但现在看,这个领域已经基本上成熟了,在这里,我为大家总结最近看到的 GNN 的顶级应用。
01
GNN + 推荐系统
图的出现源于电子商务平台上,用户与产品的交互,许多公司将 GNN 用于产品推荐。
一个标准的使用案例是,利用某种形式的负采样损失去学习节点嵌入,来建模用户和项目的图,然后利用knn去实时抽取给定用户相类似的项目。Uber Eats[1] 是第一个应用这种pipeline的公司,它通过图神经网络 GraphSage[2] 为用户推荐食品和餐馆。
食品推荐,由于地理等因素的限制,图相对会较小。有些公司在GNN的使用上,可以达到数十亿个边的规模。其中之一,便是阿里巴巴[3]。
阿里巴巴在拥有数十亿用户和产品的庞大网络上进行图嵌入和 GNN 。构建这样的图可能是一场工程噩梦,但是使用Aligraph pipeline,只需要5分钟就可以构建一个包含400M 节点的图!AliGraph [4] 支持高效的分布式图存储、优化的采样操作符和内置 GNNs。目前,它被部署在阿里的多个产品的推荐和个性化检索当中。