导读:
“通用智能的发展依赖于构建能够自行生成算法的AI,只有这样才能让AI摆脱人类的手工规划,真正地走向自主发展的道路。”
对于如何实现通用智能,前OpenAI研究经理、英属哥伦比亚大学副教授Jeff Clune认为,达尔文进化论已经给了我们答案——从单细胞生命到人类文明,智能的发展似乎暗示着一个规律——智能或许并不是被计划好的。它诞生于智能体自身的不断迭代和进步。在这个过程中,智能体自身会产生有利于其发展的进化方法(算法)。
作为进化论的拥趸,Clune早年为了探究智能的本质,完成了哲学的学习。之后又因为阅读了美国进化算法科学家Hod Lipson的报道,毅然投入到人工智能的学习和研究中。之后他与同事们联合成立了Uber AI Lab,并担任过OpenAI研究团队的负责人。近日在AI学界引起关注的VPT(Video Pretrained)模型便有Clune的贡献。
此外,Clune教授还在2022年智源大会上做了题为“Improving Robot and Deep Reinforcement Learning via Quality Diversity, Open-Ended, and AI-Generating Algorithms”演讲,回看详见文末。
近日,智源社区采访了Clune教授,请他谈谈自己早年的科研经历,并为读者解读AI-GAs的核心思路。
(图片来源:智源大会官网)
Jeff Clune
前OpenAI研究经理、英属哥伦比亚大学副教授
Jeff Clune主要研究深度学习,包括深度强化学习。此前,他是OpenAI研究团队负责人,Uber人工智能实验室的高级研究经理和创始成员,怀俄明大学计算机科学的哈里斯副教授,以及康奈尔大学的研究科学家。他获得了密歇根州立大学(博士、硕士)和密歇根大学(学士)的学位。自 2015 年以来,他获得了白宫颁发的科学家和工程师总统早期职业奖,在《Nature》发表了两篇论文,在PNAS发表了一篇论文,获得了NSF CAREER奖,十年杰出论文和杰出青年研究员奖,并在顶级机器学习会议(NeurIPS、CVPR、ICLR 和 ICML)上获得了最佳论文奖、口头报告和邀请讲座。他的研究经常被媒体报道,包括《纽约时报》、NPR、NBC、《连线》、BBC、《经济学家》、《科学》、《自然》、《国家地理》、《大西洋》和《新科学家》。
采访撰稿:戴一鸣
编辑:李梦佳
从哲学生到计算机博士,孜孜追求解答进化与智能两大问题
1. 达尔文进化论的忠实拥趸,想通过哲学理解智能本源
Jeff Clune并非一开始就进入计算机科学的领域。在本科阶段,他在密歇根大学学习哲学。根据Uber Engeering在2019年的采访文章[1],Clune一直对于两个问题非常痴迷:
地球上如此复杂的生命形式是如何演化出来的?比如说,自然界为何有美洲豹、鹰、海豚、鲸鱼等各种各样不同形式的生命?什么样的方式能够诞生出如此无穷无尽的生命工程奇迹?达尔文的进化论回答了一些问题,但还有很多人类没有理解的地方。
“思考”是如何发生的?我们是否能够构建一个有思想的机器?
为此,Clune选择哲学作为大学专业。令他感到失望的是,尽管哲学非常有趣,他却无法检验自己的观点是否正确并通过迭代的方式改进。[1]
2000年代初,Clune阅读了一篇介绍时任康奈尔大学教授Hod Lipson[7]使用进化算法开发机器人的文章[2]。他深受影响,打算选择研究机器学习和计算机科学,因为他终于有机会能够通过构建智能系统,从而来理解它。Clune认同美国理论物理学家Richard Feynman的名言:“What I cannot create, I do not understand.”(我所不能创造的,我便不能理解。)在Clune看来,人工智能研究是可以解答进化和思考问题的绝佳途径。
2. 跨专业申请博士屡遭拒绝,八年求学为与偶像共事
怀着一腔热情的Clune首先联系了Hod Lipson,希望能够加入他的实验室。遗憾的是,实验室需要申