让陪伴机器人不再「直男」,读懂更多情绪 | 香港理工大学李嫣然

李嫣然博士团队通过真人多轮情感对话数据,研究如何提升陪伴机器人的共情能力。他们利用情绪理解、认知图谱和策略驱动的对话模型,试图让机器人能更好地理解并回应用户情绪。尽管取得了一定进展,但准确的情绪理解和认知仍具挑战。未来研究将关注更好的认知能力、多领域适应性、技能融合和统一学习架构,以及更合理的共情评价指标。
摘要由CSDN通过智能技术生成

导读:现实对话中,「多喝热水」、「早点睡」等直男语录让人啼笑皆非。从某种意义上说,现有的对话系统就好比「直男」,对于情绪的感受力较弱。因其仅仅根据文本表面的意义进行分类,无法理解文本背后更深层的意思,无法与对方实现真正的「共情」。

如何提高陪伴机器人的共情能力,实现更专业、自然的情绪支持人机对话?香港理工大学李嫣然博士团队在这方面做了大量的工作。团队通过真人多轮情感支持对话中的中文语料数据挖掘语言背后的情绪流,进而针对AI的情绪探索和反馈能力等方面进行了有效地优化。

近日在由MLNLP(机器学习算法与自然语言处理)社区 和 中国中文信息学会青年工作委员会 联合举办的第九期 MLNLP 2022 学术研讨会上,李嫣然博士分享了题为「2022年了,陪伴对话机器人离我们还有多远?」的报告。同时,智源社区针对该项工作的灵感和初衷进行了独家访问。

bd6b38bd1d539702c766509551daf05a.jpeg

李嫣然,博士毕业于香港理工大学,师从李文捷教授。其曾任小米人工智能实验室高级算法工程师、场景对话团队负责人,同时也兼任着北京大学心理与认知学院的行业导师。她在 ACL/EMNLP/ICLR/AAAI等国际顶级会议及期刊上发表论文二十余篇,涵盖情感计算、人机对话、自然语言生成等研究领域,累计引用次数超过1800次。同时她也担任了多年的NLP相关会议的领域主席及审稿人。个人主页:https://yanran.li/

采访&撰文:李梦佳、熊宇轩

基于陪伴机器人的愿景,解决现代社会的情绪问题

Q1:您所在团队这项研究的灵感来源于?

A:情感对话的一系列研究,都基于我们对于实现陪伴型机器人的愿景。为此,我们也学习了许多心理咨询、沟通交流相关的书籍和文献。经典的心理学书籍在此不列举了,对我个人影响最大的论文有《Dialogue Model

and Response Generation for Emotion Improvement Elicitation》和《ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning》。

Q2:多轮真人对话中文语料数据,这些数据来源于哪里?

A:多轮真人对话是研究团队出资进行的付费众包,我们提供特定的场景以及希望对话双方扮演的角色,参与众包的人员按照要求进行限定场景的多轮对话。在收集原始语料中,我们会尽心严格地筛选和清洗,最终得到了这份不涉及任何隐私、涵盖日常生活各种场景、具备真人交流的同理心和常识的中文对话数据。我们也将其开源希望回馈给学界,推动相关研究发展。

Q3:在人机交互中,我们往往遇到的问题是,AI在对话中仿佛理解了,但又没有真的理解。未来,想要真正实现有情绪的聊天,还有望采取哪些技术手段?目前的研究成果还有哪些不足之处?

A:现有的对话模型、大部分 NLP 甚至 AI 模型,基本都是数据驱动的,导致很多时候模型学到的都是数据之间的相关性,就会导致模型仿佛理解了又没有真的理解的情况。我个人认为常识对于我们的模型是必不可缺的。现在,我们虽然已经有了大规模的常识知识库,也有了一些可以进行常识推理、融合常识的模型,但都还有很多提升的空间。我也一直在关注这些方面的进展,比如如何从海量数据、超大规模语言模型中自动提取/蒸馏结构化的常识,如何通过人机交互、人机协作(如 human-in-the-loop)的方式,为模型学习常识提供更轻量化、精细化的监督信号等等。

Q4:未来这些工作将具体应用到哪些心理学领域?具体对于躁郁症等精神疾病的治疗有哪些帮助?

A:作为一个心理学业余爱好者,我了解到情绪问题和情绪疾病还是两个不同的层面。通常来说,现代社会的人们都或多或少会面临情绪问题,比如焦虑,这些是一种短期的、不稳定的负面状态。只有当情绪问题严重到一定程度才会被称为情绪疾病,比如抑郁,而情绪疾病的诊断就像其它生理疾病一样是有科学的标准的。目前我们的工作还主要是为了缓解人们生活中的情绪问题,比如疏导工作压力大的上班族,关怀独自在家的老年人,引导考前焦虑的学生等等。如果说到专业的情绪疾病诊断和治疗,前段时间发布的论文《D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat》可能更相关一些。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值