导读
近几年来,以大模型为代表的人工智能技术正在引领下一个产业发展的浪潮。目前,以ChatGPT、AlphaFold为代表的人工智能在文图生成、自然语言处理、蛋白质结构模拟等方面取得的突破性进展正在为这个行业带来不断的惊喜以及似乎无限的想象空间。然而,大模型的可解释性以及大模型对知识的理解能力仍存在问题,这些问题是大模型技术在进一步发展及落地过程中绕不开的阴云。
生物脑作为地球上亿万年进化的产物,一直被认为是最智能的机体。向生物脑学习智能产生的机制基础,是认知、神经、计算科学家们孜孜以求的研究目标和方向,也是类脑智能发展最根本的底层逻辑。随着越来越多的大脑结构和功能数据被全球的研究人员收集、分析和理解。大脑认知行为产生的基本神经原理对于人工智能基础理论和算法创新的启发作用也正在被广泛认可。
智源认知神经基础方向的科学家和研究员们,结合他们多年在交叉领域的研究经验,提出用脑科学的“第一性原理”来启发类脑智能研究。针对每一个“第一性原理”,文章综述了这些原理的神经基础、基本特性,以及这些原理对于AI模型与算法可能会有哪些启发。希望这些第一性原理,能够为人工智能基础模型提供来自脑科学的启发,并为新一代通用智能的研发提供新视角。
原文链接:AI of Brain and Cognitive Sciences: From the Perspective of First Principles(https://arxiv.org/abs/2301.08382)
1.吸引子动力学:
神经信息处理的标准模型
大脑中的海量神经元构成复杂的网络,产生多样的吸引子动力学现象,实现丰富的神经计算。诺贝尔生理学或医学奖获得者Edvard Moser曾说,“对于任何想了解大脑神经活动模式如何产生的神经科学家来说,理解吸引子网络至关重要。吸引子网络动力学普遍存在于大脑的不同系统。证明吸引子网络的存在,并阐释其运行机制是实现深入理解大脑认知能力的关键。”
吸引子是一个动力学系统在不接受外界输入情况下靠自身动力学就能维持的非静息的稳定状态。神经系统可以通过吸引子动力学实现动态环境下,对外部世界的稳定表征。典型的吸引子网络有离散吸引子网络和连续吸引子网络,其中,连续吸引子网络为当前为数不多的得到了实验验证和广泛应用的正则化神经计算模型。
图1. I吸引子网络中的信息表征。(A-B) 离散吸引子网络中记忆容量和鲁棒性之间的权衡 [Chaudhuri R and Fiete I, 2016]。(C-D) 吸引子网络实现高效信息搜索 [Dong X, Chu T, Huang T et al, 2021]。(E-F) 相互连接的 CANN 中的信息集成。(E-F) 相互连接的连续吸引子网络实现多模态信息的贝叶斯最优整合[Zhang WH, Wang H, Chen A et al, 2019]
吸引子动力学可以帮助大脑实现丰富的计算功能,以离散和连续吸引子网络为例(如图1所示):
1)吸引子网络的去噪特性,可以用于记忆信息的鲁棒表征;
2)引入带噪的神经元适应性机制,吸引子网络可以实现高效的