1049 数列的片段和 (20 分)

本文介绍了一种计算给定正整数数列中所有可能片段之和的方法,并解决了因使用double类型导致的精度问题,通过将double类型的数值转换为long long类型进行计算,最后输出精确到小数点后两位的结果。
摘要由CSDN通过智能技术生成

给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。

给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。

输入格式:

输入第一行给出一个不超过 105 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以一个空格分隔。

输出格式:

在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。

输入样例:

4
0.1 0.2 0.3 0.4

输出样例:

5.00

感谢 Ruihan Zheng 对测试数据的修正。

思路:在指针指向下标为 i 的数 s[i] 时,会产生 n-i 个 s[i] ,而此之前产生的个数与 s[i-1] 的个数有关。

第三个测试点愣是过不了,实在找不出来了,去看了看柳神的代码,发现是double的精度问题。因其以二进制储存,所以再相加时会出现大的误差,为减小误差,用 long long 类型来储存把double放大1000倍的数据,最后在除以1000。给PTA反馈改测试用例的同学写的关于这题的博客https://blog.zhengrh.com/post/about-double/ 

#include<iostream>
using namespace std;
int main(){
	long long n,k=0,sum=0;
	double s[100000];
	cin>>n;
	for(int i=0;i<n;i++){
		cin>>s[i];
		k=n-i+k-i;
		sum+=(long long)(s[i]*1000)*k;
	}
	printf("%.2f",sum/1000.0);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值