给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入格式:
输入第一行给出一个不超过 105 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以一个空格分隔。
输出格式:
在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。
输入样例:
4 0.1 0.2 0.3 0.4
输出样例:
5.00
感谢 Ruihan Zheng 对测试数据的修正。
思路:在指针指向下标为 i 的数 s[i] 时,会产生 n-i 个 s[i] ,而此之前产生的个数与 s[i-1] 的个数有关。
第三个测试点愣是过不了,实在找不出来了,去看了看柳神的代码,发现是double的精度问题。因其以二进制储存,所以再相加时会出现大的误差,为减小误差,用 long long 类型来储存把double放大1000倍的数据,最后在除以1000。给PTA反馈改测试用例的同学写的关于这题的博客:https://blog.zhengrh.com/post/about-double/
#include<iostream>
using namespace std;
int main(){
long long n,k=0,sum=0;
double s[100000];
cin>>n;
for(int i=0;i<n;i++){
cin>>s[i];
k=n-i+k-i;
sum+=(long long)(s[i]*1000)*k;
}
printf("%.2f",sum/1000.0);
return 0;
}