数据分析经常会遇到数据量大的问题,比如用Python语言时经常会遇到内存溢出的问题,即使把整个机器内存全部使用,达到最大使用率,还是无济于事,比如数据量是10T,并且在大数据量下,既要保证数据能够得出结果,还要一个好的模型进行迭代训练,得到一个好的模型。这些很难。
这里有两个问题
- 数据量大
- 模型训练准确性
对于第一个问题,就算单机内存再大,也是不可能处理未来不可预知的增长的数据的,这时候就需要分布式处理,利用并行计算能力,分而治之。
对于第二个问题,一个好的模型通常需要经过大量的训练,我们都知道这些训练数据通常也要较大,复杂的迭代运行,无论是对CPU,还是内存RAM都是很吃的,这时候就需要一个好的训练工具,来帮我们解决这个问题。
解决办法
pyspark
这时候,一个分布式解决方案pyspark就诞生了,python中有丰富的第三方库,数据分析,机器学习,python编写hadoop,python编写spark在工业中用的都很多,主要就是解决大数据场景下的python数据分析与模型训练问题。
我要怎么办
我们不甘心做一个只能处理小数据量简单模型的数据分析苦力,怎么办,学习,学习,学习,只有通过不断的学习
才能提升自己的核心竞争力。
才能新老一日,方得一夜安眠。
如果你也是这么想,那就太好了。
年轻的心,燃烧起来,让这个冬天不再冷!