大数据技术之SparkSQL(四)RDD、DataFrame、DataSet异同

本文探讨SparkSQL中的RDD、DataFrame和DataSet的区别与共性。它们都是Spark的分布式数据集,具备惰性机制和自动缓存。DataFrame与DataSet支持SparkSQL操作,DataFrame常用保存方式能带上表头。DataSet提供了更强的类型安全,而DataFrame适用于适配性强的函数。随着版本发展,DataSet逐渐成为主要API。
摘要由CSDN通过智能技术生成

2.5 RDD、DataFrame、DataSet

大数据技术之SparkSQL(四)RDD、DataFrame、DataSet异同

 

在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:

RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)

如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。

在后期的Spark版本中,DataSet会逐步取代RDD和DataFrame成为唯一的API接口。

2.5.1 三者的共性

1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利

2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算。

3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出。

4、三者都有partition的概念

5、三者有许多共同的函数,如filter,排序等

6、在对DataFrame和Dataset进行许多操作都需要import spark.implicits._这个包进行支持

7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值