51nod 1242 斐波那契数列的第N项(矩阵幂运算)

 

1242 斐波那契数列的第N项

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题

 收藏

 

 关注

斐波那契数列的定义如下:

 

F(0) = 0

F(1) = 1

F(n) = F(n - 1) + F(n - 2) (n >= 2)

 

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)

给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。

Input

输入1个数n(1 <= n <= 10^18)。

Output

输出F(n) % 1000000009的结果。

Input示例

11

Output示例

89

 

 

 

 

//矩阵幂运算 
//注意是long long类型
#include<stdio.h>
#include<string.h>
using namespace std;
#define data 1000000009
struct mat{
	long long a[2][2];
};
mat mat_return(mat x,mat y){
	mat res;
	memset(res.a ,0,sizeof(res.a));
	for(int i=0;i<2;i++)
	for(int j=0;j<2;j++)
	for(int k=0;k<2;k++)
	{
		res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j]%data)%data;
	}
	return res;
}
int main()
{
	long long n;
	while(~scanf("%lld",&n)){
		mat c,res;
		c.a[0][0]=c.a[0][1]=c.a[1][0]=1;//赋值 1,1,1,0; 
		c.a[1][1]=0;
		memset(res.a,0,sizeof(res.a ));
			for(int i=0;i<2;i++)
			res.a[i][i]=1;//单位矩阵 ,都一样 
			while(n>0){//接下来就类似快速幂运算了 
				if(n&1)
				res=mat_return(res,c);
				c=mat_return(c,c);
				n/=2;
			}
			printf("%lld\n",res.a [0][1]); 
		}
		return 0;
	}

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值