基准时间限制:1 秒 空间限制:131072 KB 分值: 5
难度:1级算法题
X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,[10 20]和[12 25]的重叠部分为[12 20]。
给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。
Input
第1行:线段的数量N(2 <= N <= 50000)。 第2 - N + 1行:每行2个数,线段的起点和终点。(0 <= s , e <= 10^9)
Output
输出最长重复区间的长度。
Input示例
5 1 5 2 4 2 8 3 7 7 9
Output示例
4
/*
思路:
这道题先需要对线段按照起始下标由小到大进行排序。
我们需要一个当前下标pos,初始值是第一条线段的结束下标,并将第一条线段视为基准线段。
从第二条线段开始遍历,若该线段的结束下标没有超过pos,则重叠长度为该条线段长度;
若该线段结束下标超过了pos,则重叠长度为pos-该线段起始下标,并以该条线段作为新的基准线段,
pos更新为该线段的结束下标,继续遍历。
其实每次都是与上一条线段相比,可以画画就清楚了
选择最大的一个重叠长度即可。*/
#include<stdio.h>
#include<algorithm>
using namespace std;
struct line{
int l;//左坐标
int r;//右坐标
}f[50000];
int comp(line a,line b)
{
return a.l < b.l ;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d%d",&f[i].l ,&f[i].r);
sort(f,f+n,comp);//排序
int pos=f[0].r ;
int length=0;
for(int i=1;i<n;i++){
if(f[i].r <pos){
length=max(f[i].r-f[i].l,length);
}
else {
length=max(length,pos-f[i].l);
pos=f[i].r;
}
}
printf("%d\n",length);
return 0;
}