xynuoj 1435 混合背包

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/BBHHTT/article/details/79970969

1435: 混合背包

时间限制: 1 Sec  内存限制: 128 MB
提交: 12  解决: 11
您该题的状态:已完成
[提交][状态][讨论版]

题目描述

      一个旅行者有一个最多能用V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn。有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

输入

第一行:二个整数,V(背包容量,V<=200),N(物品数量,N<=30);

第2..N+1行:每行三个整数Wi,Ci,Pi,前两个整数分别表示每个物品的重量,价值,第三个整数若为0,则说明此物品可以购买无数件,若为其他数字,则为此物品可购买的最多件数(Pi)。

输出

仅一行,一个数,表示最大总价值。

样例输入

10 3
2 1 0
3 3 1
4 5 4

样例输出

11

混合背包模板,这里贴两种代码,一种是没有优化的,一种是用多重背包优化的(应该是这样,因为后台数据太水还是怎样,这两种代码并没有体现出差别,都是0MS,但还是贴上比较好)。

普通:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int w[135];//重量 
int c[135];//价值 
int p[135];//个数 
int dp[10005];
int main()
{
	int v,n;
	memset(dp,0,sizeof(dp));
	scanf("%d%d",&v,&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d%d",&w[i],&c[i],&p[i]);
	}
	for(int i=1;i<=n;i++)
	{
		if(p[i]==0)
		{   //完全背包 
			for(int j=w[i];j<=v;j++)
			{
				if(dp[j]<dp[j-w[i]]+c[i])
					dp[j]=dp[j-w[i]]+c[i];
			}
		}
		else
		{    //每一种有p[i]个可选 
			for(int j=1;j<=p[i];j++) 
			{   //01背包 
				for(int k=v;k>=w[i];k--)
				if(dp[k]<dp[k-w[i]]+c[i])
					dp[k]=dp[k-w[i]]+c[i];
			}
		}
	}
	printf("%d\n",dp[v]);
}

对多重背包优化:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int w[135];
int c[135];
int p[135];
int dp[10005];
int Value[10005];
int size[10005];
int main()
{
	int v,n;
	memset(dp,0,sizeof(dp));
	scanf("%d%d",&v,&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d%d",&w[i],&c[i],&p[i]);
	}
	for(int i=1;i<=n;i++)
	{
		if(p[i]==0)
		{
			for(int j=w[i];j<=v;j++)
			{
				if(dp[j]<dp[j-w[i]]+c[i])
					dp[j]=dp[j-w[i]]+c[i];
			}
		}
		else
		{
			int count=0;
			for(int j=1; j<=p[i]; j<<=1)
	        {
	            //<<右移1位,相当于乘2  
	            Value[count]=j*c[i];  
	            size[count++]=j*w[i]; 
	            p[i]-=j;  
	        } 
	        if(p[i]>0)
	        {  
	            Value[count]=p[i]*c[i];  
	            size[count++]=p[i]*w[i];  
	        }
			for(int i=0; i<count;i++)
            for(int j=v;j>=size[i];j--)
                if(dp[j]<dp[j-size[i]]+Value[i]) 
                    dp[j]=dp[j-size[i]]+Value[i];
		}
	}
	printf("%d\n",dp[v]);
}

阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页