三分法解决凸(凹)函数极值问题​​​​​​​

转自:三分法解决凸(凹)函数极值问题

二分法只适用与线性函数,当函数脱离线性而呈现凸性或者凹性的时候,三分是很有必要的。

三分过程如下图:

凸函数:

凹函数:

实现方法:

//这个只是凸函数的一个模板
double Calc(double p) {//用来计算选择的点的函数值
   /*...*/
}


double Solve(double MIN, double MAX) {
    double Left, Right;
    double mid, midmid;
    double mid_area = 0, midmid_area = 0;    //***
    Left = MIN; Right = MAX;
    while (Left + eps < Right) {
        mid = (Left + Right) / 2;
        midmid = (mid + Right) / 2;
        mid_area = Calc(mid);
        midmid_area = Calc(midmid);

        if (midmid_area - mid_area > eps) Right = midmid;
        else Left = mid;
    }
    return mid_area;
}

可以看个例题:51nod 1629 B君的圆锥(三分

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值