动态规划之最短路径三角形

本文探讨了在解决最短路径三角形问题时的错误思路与正确递归方法。作者指出,错误在于未考虑未被选数字后面可能出现更大数。正确解法采用递归,从前往后分析,并通过两层循环计算每个数的可能路径和,以找到最大数字和。关键在于确定边界条件并储存重复的变量,这是动态规划与分治法相似之处。
摘要由CSDN通过智能技术生成

原来错误思路:
开始想的是从第二行选取最大的,然后顺次选取最大的,但是忽略了未被选的小的数后面也可能出现更大的数;然后我又选择从最后一行往前加,结果还是犯了同样的错误。
原因:不会递归,不明白递归是如何让操作的
正确思路
采取递归的方法,分析的时候是从前往后分析,当选择一个数的时候,要看这个数加到最后是不是最大的数值和;当计算每一个路径的时候,从后往前计算,递归?先暂时写上自己的思路吧,以后做到更多的题还会来总结:1.先写边界2.由于是计算出每个数的可能路径的数字和,所以要有两层循环,一层控制行数,一层控制每个数的路径和,比较完大小后存取每个数的路径和
关键代码

for(i=1;i<=n;i++)
    {
        a[n][i]=b[n][i];//存取边界,递归出口
    }
    for(i=n-1;i>=1;i--)
    {
        for(j=1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值