题目:
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
自顶向下的最小路径和为 11
(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
思路:
自底向上进行动态规划。从倒数第二行开始,每一位的数值更新为该值与下一行相邻位置值的和,直到三角形顶部。
代码:
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
row = len(triangle)-2
while row >= 0:
col = len(triangle[row])
for j in range(col):
triangle[row][j] += min(triangle[row+1][j],triangle[row+1][j+1])
row-=1
return triangle[0][0]