Spark RDD distinct 算子

本文详细介绍了Spark中的distinct算子的工作原理,通过源码分析展示了如何利用reduceByKey实现去重功能,并提供了使用示例。重点讨论了distinct与PairRDD的区别,以及在实际项目中的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.引言

使用spark很久第一次用到 distinct 算子,趁热打铁熟悉一下 distinct 的操作。

 

二.源码

distinct 算子会返回一个新的 RDD,这里的每一个元素都是唯一的不会有重复。


  /**
   * Return a new RDD containing the distinct elements in this RDD.
   */
  def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)
  }

  /**
   * Return a new RDD containing the distinct elements in this RDD.
   */
  def distinct(): RDD[T] = withScope {
    distinct(partitions.length)
  }

 

三.distinct 使用示例

随机生成20个(Int, Char)格式truple,并序列化为5个Partiton,使用 distinct去重。

    // Spark 初始化
    val sc = new SparkContext(conf)

    val random = scala.util.Random
    random.setSeed(100)
    sc.setLogLevel("error")
    val randomChar = ('a' to 'z').zipWithIndex.map(x => (x._2, x._1)).toMap
    val randomSample = (0 until 20).map(x => {
      val num = random.nextInt(100)
      val char = randomChar(random.nextInt(26))
      (num, char)
    })

    // Distinct 实现
    val rdd = sc.parallelize(randomSample, 5)
    println("Partition Number Count: " + rdd.getNumPartitions)
    val distinctArr = rdd.distinct.collect()
    println("Distinct Number Count: " + distinctArr.length)
    println(distinctArr.sorted.mkString(" "))

 

 

四.DIY Distinct

distinct的源码也很简单,通过 reduceByKey 就能实现。 

    // 源码实现
    println("Diy Demo: ")
    val rdd2 = sc.parallelize(randomSample, 5)
    val distinctArr2 = rdd2.map(x => (x, null)).reduceByKey((x, y) => x, 5).map(_._1).collect()
    println(distinctArr2.sorted.mkString(" "))

 

Tips:

Distinct 是对 RDD 的整个内容去重,不管是 truple 还是 String 或者是其他类型,这里容易和 pairRdd 混淆,最开始认为 distinct 是对 PairRDD 的 key 进行去重,后来发现不是。

Spark RDD(弹性分布式数据集)是Spark中最基本的数据抽象,它代表了一个不可变、可分区、可并行计算的数据集合。转换算子是用于对RDD进行转换操作的方法,可以通过转换算子RDD进行各种操作和变换,生成新的RDD。 以下是一些常见的Spark RDD转换算子: 1. map(func):对RDD中的每个元素应用给定的函数,返回一个新的RDD,新RDD中的每个元素都是原RDD中元素经过函数处理后的结果。 2. filter(func):对RDD中的每个元素应用给定的函数,返回一个新的RDD,新RDD中只包含满足条件的元素。 3. flatMap(func):对RDD中的每个元素应用给定的函数,返回一个新的RDD,新RDD中的每个元素都是原RDD中元素经过函数处理后生成的多个结果。 4. union(other):返回一个包含原RDD和另一个RDD中所有元素的新RDD。 5. distinct():返回一个去重后的新RDD,其中不包含重复的元素。 6. groupByKey():对键值对RDD进行分组,返回一个新的键值对RDD,其中每个键关联一个由具有相同键的所有值组成的迭代器。 7. reduceByKey(func):对键值对RDD中具有相同键的值进行聚合操作,返回一个新的键值对RDD,其中每个键关联一个经过聚合函数处理后的值。 8. sortByKey():对键值对RDD中的键进行排序,返回一个新的键值对RDD,按照键的升序排列。 9. join(other):对两个键值对RDD进行连接操作,返回一个新的键值对RDD,其中包含两个RDD中具有相同键的所有元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT_666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值