【IPMV】图像处理与机器视觉:Lec7 Image Filtering

【IPMV】图像处理与机器视觉

本系列为2025年同济大学自动化专业**图像处理与机器视觉**课程笔记
Lecturer: Rui Fan、Yanchao Dong


Lec0 Course Description

Lec3 Perspective Transformation

Lec7 Image Filtering

Lec8 Image Pyramid

Lec9 Laplace Blending

Lec10 Edges and Lines

Lec11 Keypoint Features and Corners

Lec12 Blob Detector

持续更新中



极市开发者平台-计算机视觉算法开发落地平台-极市科技

Lec7 Image Filtering 图像滤波

  • in the spatial domain:
    • Smoothing, sharping
    • Feature extraction( measuring texture, finding edges, distinctive points and patterns
  • in the frequency domain
    • Modify the frequencies of images
    • Noise removal, (re)sampling, image compression

首先介绍一些卷积等准备知识,然后从点运算开始(不依赖邻域),接下来介绍邻域算子,介绍了线性滤波以及非线性滤波的一些常见算子,然后介绍此类算子的一个便利工具——傅里叶变换


0 Prelininaries

0.1 Convolution and Cross-Correlation 卷积与互相关

图像处理中,kernel(or 卷积矩阵 or mask)是用于与图像做卷积,实现模糊、锐化、压纹、边缘检测等的小矩阵。

卷积表达式 g [ i , j ] = h ∗ f = ∑ u = − k k ∑ v = − k k h [ u , v ] f [ i − u , j − v ] g[i,j]=h\ast f=\sum^{k}_{u=-k}\sum^{k}_{v=-k}h[u,v]f[i-u,j-v] g[i,j]=hf=u=kkv=kkh[u,v]f[iu,jv]

Convolution 和 Cross-correlation 的区别

Convolution Cross-correlation 互相关
Rotating Kernel ✔ 执行前180°旋转核 ❌ 直接使用原始核
Formula g [ i , j ] = h ∗ f ( i , j ) = ∑ u = − k k ∑ v = − k k h [ u , v ] f [ i − u , j − v ] g[i,j]=h\ast f(i,j)=\sum^{k}_{u=-k}\sum^{k}_{v=-k}h[u,v]f[i-u,j-v] g[i,j]=hf(i,j)=u=kkv=kkh[u,v]f[iu,jv] g [ i , j ] = h ∗ f ( i , j ) = ∑ u = − k k ∑ v = − k k h [ u , v ] f [ i + u , j + v ] g[i,j]=h\ast f(i,j)=\sum^{k}_{u=-k}\sum^{k}_{v=-k}h[u,v]f[i+u,j+v] g[i,j]=hf(i,j)=u=kkv=kkh[u,v]f[i+u,j+v]
Notation g = h ∗ f g=h\ast f g=hf g = h ⊗ f g =h\otimes f g=hf
Example 在这里插入图片描述
Convolution 的 kernel 要做旋转
在这里插入图片描述

Convolution 是严格数学定义操作
Cross-correlation 深度学习/模板匹配常用

不同的卷积类型

Convolution type Example Note
Valid 输出尺寸缩减 (N - K + 1)
Same 输出保持原尺寸,边缘补零
Full 输出扩大 (N + K - 1),全重叠计算

0.2 Gradient 梯度

Gradient 梯度: ▽ f = [ ∂ f ∂ x , ∂ f ∂ y ] \bigtriangledown f=[\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}] f=[xf,yf]

Gradient magnitude 梯度幅值: ∣ ∣ ▽ f ∣ ∣ = ( G x ) 2 + ( G y ) 2 ||\bigtriangledown f||=\sqrt{(G_x)^2+(G_y)^2} ∣∣f∣∣=(Gx)2+(Gy)2

Gradient direction 梯度方向: θ = a r c t a n ( G y G X ) , θ ∈ [ 0 , 180 ° ] \theta=arctan(\frac{G_y}{G_X}), \theta\in[0,180\degree] θ=arctan(GXGy),θ[0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值