【IPMV】图像处理与机器视觉
本系列为2025年同济大学自动化专业**图像处理与机器视觉**课程笔记
Lecturer: Rui Fan、Yanchao Dong
Lec3 Perspective Transformation
Lec11 Keypoint Features and Corners
持续更新中
文章目录
Lec7 Image Filtering 图像滤波
- in the spatial domain:
- Smoothing, sharping
- Feature extraction( measuring texture, finding edges, distinctive points and patterns
- in the frequency domain
- Modify the frequencies of images
- Noise removal, (re)sampling, image compression
首先介绍一些卷积等准备知识,然后从点运算开始(不依赖邻域),接下来介绍邻域算子,介绍了线性滤波以及非线性滤波的一些常见算子,然后介绍此类算子的一个便利工具——傅里叶变换
0 Prelininaries
0.1 Convolution and Cross-Correlation 卷积与互相关
图像处理中,kernel(or 卷积矩阵 or mask)是用于与图像做卷积,实现模糊、锐化、压纹、边缘检测等的小矩阵。
卷积表达式: g [ i , j ] = h ∗ f = ∑ u = − k k ∑ v = − k k h [ u , v ] f [ i − u , j − v ] g[i,j]=h\ast f=\sum^{k}_{u=-k}\sum^{k}_{v=-k}h[u,v]f[i-u,j-v] g[i,j]=h∗f=u=−k∑kv=−k∑kh[u,v]f[i−u,j−v]
Convolution 和 Cross-correlation 的区别
Convolution | Cross-correlation 互相关 | |
---|---|---|
Rotating Kernel | ✔ 执行前180°旋转核 | ❌ 直接使用原始核 |
Formula | g [ i , j ] = h ∗ f ( i , j ) = ∑ u = − k k ∑ v = − k k h [ u , v ] f [ i − u , j − v ] g[i,j]=h\ast f(i,j)=\sum^{k}_{u=-k}\sum^{k}_{v=-k}h[u,v]f[i-u,j-v] g[i,j]=h∗f(i,j)=u=−k∑kv=−k∑kh[u,v]f[i−u,j−v] | g [ i , j ] = h ∗ f ( i , j ) = ∑ u = − k k ∑ v = − k k h [ u , v ] f [ i + u , j + v ] g[i,j]=h\ast f(i,j)=\sum^{k}_{u=-k}\sum^{k}_{v=-k}h[u,v]f[i+u,j+v] g[i,j]=h∗f(i,j)=u=−k∑kv=−k∑kh[u,v]f[i+u,j+v] |
Notation | g = h ∗ f g=h\ast f g=h∗f | g = h ⊗ f g =h\otimes f g=h⊗f |
Example | ![]() Convolution 的 kernel 要做旋转 |
![]() |
Convolution 是严格数学定义操作
Cross-correlation 深度学习/模板匹配常用
不同的卷积类型
Convolution type | Example | Note |
---|---|---|
Valid | ![]() |
输出尺寸缩减 (N - K + 1) |
Same | ![]() |
输出保持原尺寸,边缘补零 |
Full | ![]() |
输出扩大 (N + K - 1),全重叠计算 |
0.2 Gradient 梯度
Gradient 梯度: ▽ f = [ ∂ f ∂ x , ∂ f ∂ y ] \bigtriangledown f=[\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}] ▽f=[∂x∂f,∂y∂f]
Gradient magnitude 梯度幅值: ∣ ∣ ▽ f ∣ ∣ = ( G x ) 2 + ( G y ) 2 ||\bigtriangledown f||=\sqrt{(G_x)^2+(G_y)^2} ∣∣▽f∣∣=(Gx)2+(Gy)2
Gradient direction 梯度方向: θ = a r c t a n ( G y G X ) , θ ∈ [ 0 , 180 ° ] \theta=arctan(\frac{G_y}{G_X}), \theta\in[0,180\degree] θ=arctan(GXGy),θ∈[0