
考试用
文章平均质量分 94
IPMV 考试知识点
BIYing_Aurora
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【IPMV】图像处理与机器视觉:Lec13 Robust Estimation with RANSAC
在计算机视觉与图像处理领域,如何从含大量异常值的数据中准确提取有效模型是关键挑战。本笔记聚焦同济大学自动化专业课程核心内容,深度解析随机抽样一致性(RANSAC)算法,揭示其通过 “随机抽样 + 模型验证” 机制区分内点与外点的核心逻辑,以及在直线拟合、圆检测等场景中的鲁棒性优势。🔥 核心亮点速览:噪声数据克星;动态优化机制;多场景适配🧠 算法核心:用 “投票” 对抗噪声⚙️ 实战案例:圆检测中的 RANSAC 应用📌 关键挑战:时间不可控;参数敏感原创 2025-07-04 10:08:46 · 817 阅读 · 0 评论 -
【IPMV】图像处理与机器视觉:Lec12 Blob Detector 斑点检测
🔥【同济大学IPMV】Blob检测:LoG与DoG算法全解析!本文详解斑点检测(Blob Detection)核心原理,带你掌握:1️⃣ LoG算法:尺度归一化+极值搜索,σ=r/√2时响应最强2️⃣ DoG优化:高斯差分快速逼近LoG,SIFT特征提取的基石3️⃣ 实战对比:边缘检测看"过零点",斑点检测找"极值点"原创 2025-05-25 15:22:49 · 558 阅读 · 0 评论 -
【IPMV】图像处理与机器视觉:Lec10 Edges and Lines
🔥【同济大学课程笔记】图像处理与机器视觉:边缘与直线检测全解析🔥 重要性:边缘检测是计算机视觉基石!📌 核心内容速览1️⃣ 边缘本质:亮度突变区域,用梯度计算定位变化方向与强度。2️⃣ 关键算法:Sobel:快速一阶检测,适合简单场景。Canny:高斯模糊+双阈值,抗噪强,工业级标准。LoG:二阶导数精准定位,医疗影像首选。3️⃣ 直线检测:霍夫变换通过参数空间投票,鲁棒提取直线(车道线/文档表格)。原创 2025-05-18 21:34:30 · 2355 阅读 · 0 评论 -
【IPMV】图像处理与机器视觉:Lec11 Keypoint Features and Corners
🔥【同济大学IPMV课程笔记】Lec11 关键点特征与角点检测:从数学原理到实战应用本文深入解析图像处理核心算法——关键点特征与角点检测。从梯度数学描述出发,通过泰勒展开简化计算,揭示二阶矩阵M的特征值如何区分平坦/边缘/角点区域。重点讲解Harris算子的工程优化:用行列式与迹近似λₘᵢₙ,实现高效角点响应计算,并分析其平移/旋转不变性与尺度敏感性短板。📌 核心内容:1️⃣ 特征点三要素2️⃣ 数学本质3️⃣ Harris算子🔗 应用场景:全景拼接、物体识别、3D重建原创 2025-05-14 17:23:43 · 1069 阅读 · 0 评论 -
【IPMV】图像处理与机器视觉:Lec8 Image Pyramid 图像金字塔
📌【同济大学IPMV课程精华】图像金字塔:多尺度分析的核心技术!本文系统讲解图像金字塔在多尺度处理中的关键作用,涵盖:高斯金字塔构建:从模糊到降采样的完整流程双线性插值原理:数学推导+图解,彻底搞懂上采样混叠现象解析:为什么降采样前必须滤波?Pooling对比:Max/Average pooling的适用场景与差异超分辨率挑战:GAN网络的修复效果与局限性模板匹配实战:金字塔如何高效定位目标?课程笔记持续更新,适合CV初学者和研究者!🔍 #图像处理 #机器视觉 #同济大学原创 2025-04-29 00:02:21 · 1403 阅读 · 0 评论 -
【工程经济学】管理经济学相关
同济大学 智能建造 工程经济学原创 2025-04-28 22:44:20 · 742 阅读 · 0 评论 -
【物联网】通用网论:分层架构(网络的层次结构模型)
用生活化类比+技术干货,生动解析OSI七层模型,带你穿透复杂网络架构,理解物联网通信本质! 🌐🚚1️⃣ 发送端“打包”:应用层(写内容)→表示层(翻译)→传输层(拆包裹)→网络层(填地址)→物理层(变比特流)2️⃣ 接收端“拆包”:逆向还原数据,每层剥离头部信息如拆快递包装3️⃣ 核心机制:下层为上层服务,物理层只管0/1信号,上层协议逐级处理语义关键亮点:7层功能速查表二/三层交换对比物联网协议原创 2025-04-12 17:21:06 · 924 阅读 · 0 评论 -
【机器人学】机器人旋转的数学魔法:Rodrigues公式全解析!
🚀 【3分钟速懂Rodrigues公式】想让机器人优雅旋转?告别欧拉角的"万向锁"噩梦!🔥 Rodrigues公式用「轴+角度」直接计算旋转:1️⃣ 核心魔法:向量旋转后 = 原位置·cosθ + 轴分量补偿 + 叉积扭转(几何直觉拉满!)2️⃣ 两大形态:向量版(物理意义清晰)🆚 矩阵版(编程实现高效)3️⃣ 实战优势:机械臂关节旋转、无人机姿态控制通吃,还能做丝滑插值(SLERP)!💡 一句话总结:比欧拉角稳定,比四元数直观,机器人学里的旋转「万金油」!原创 2025-04-03 16:23:49 · 652 阅读 · 0 评论 -
【IPMV】图像处理与机器视觉:Lec7 Image Filtering
🔥【同济大学IPMV期末必过指南】图像处理核心考点一网打尽!3天速成不是梦!💯📌 考试重点预警:✅ 卷积vs互相关:核旋转区别+三种卷积类型计算(附真题对比图)✅ 梯度计算:一阶/二阶差分公式+边缘检测效果对比(Sobel/Prewitt/Laplacian高频考点)✅ 直方图均衡化:4步实现法+灰度映射表(必考计算题)✅ 滤波全家桶: - 高斯滤波σ参数选择技巧 - 双边滤波保边原理(简答题高频) - 中值滤波去噪场景(选择必考)✅ 傅里叶变换:频域卷积定理+高斯低通实现原创 2025-03-28 23:28:22 · 1192 阅读 · 0 评论 -
【IPMV】图像处理与机器视觉:Lec3 Perspective Transformation
你是否正在为同济大学自动化专业的⭐图像处理与机器视觉⭐课程头疼?是否在复杂的坐标系变换和矩阵运算中迷失方向?别担心,这篇文章就是你的救星!本文基于2025年同济大学自动化专业课程,由 Rui Fan 教授主讲,专注于🚀透视变换(Perspective Transformation)🚀的核心知识点,帮你轻松掌握考试重点!原创 2025-03-22 13:37:48 · 1107 阅读 · 0 评论 -
【IPMV】图像处理与机器视觉:Lec0 课程介绍
同济大学自动化专业 图像处理与机器视觉课程理论部分课程概要与脉络考试用原创 2025-03-21 23:23:17 · 493 阅读 · 0 评论