L2-3 二叉搜索树的2层结点统计 (25 分)

L2-3 二叉搜索树的2层结点统计 (25 分)

二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树:若它的左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。
将一系列数字按给定顺序插入一棵初始为空的二叉搜索树,你的任务是统计结果树中最下面 2 层的结点数。

输入格式:

输入在第一行给出一个正整数 N (≤1000),为插入数字的个数。第二行给出 N 个 [−1000,1000] 区间内的整数。数字间以空格分隔。

输出格式:

在一行中输出最下面 2 层的结点总数。

输入样例:

9
25 30 42 16 20 20 35 -5 28 

输出样例:

6

作者 陈越
单位 浙江大学
代码长度限制 16 KB
时间限制 400 ms
内存限制 64 MB

代码

#include<iostream>
#include<queue>

using namespace std;

int maxH = 0;
//int count = 0;
struct Node{ //树节点
    int data;
    int height;
    Node* Ltree;
    Node* Rtree;
};
void Insert(Node* tree,int num,int h){  //根据数组顺序插入数据
    //int height = 0;
    if(num>tree->data){
        if(tree->Rtree==NULL){
            tree->Rtree = new Node;
            tree->Rtree->data = num;
            tree->Rtree->Ltree = NULL;
            tree->Rtree->Rtree = NULL;
            tree->Rtree->height = h;
        }
        else{
            //cout << "left";
            Insert(tree->Rtree,num,h+1);
            
        }
    }
    else{
        if(tree->Ltree==NULL){
            tree->Ltree = new Node;
            tree->Ltree->data = num;
            tree->Ltree->Ltree = NULL;
            tree->Ltree->Rtree = NULL;
            tree->Ltree->height = h;
        }
        else{
            //cout << "right";
            Insert(tree->Ltree,num,h+1);  //每次插入深度加一
        }
    }
}
int layerorder(Node* root)  //层次遍历得到树的深度
{
	queue<Node*> q;
	q.push(root);
	while(!q.empty())
	{
		Node* now = q.front();
		q.pop();
        if(now->height>maxH){
            maxH = now->height;
        }
		if(now->Ltree != NULL) q.push(now->Ltree);
		if(now->Rtree != NULL) q.push(now->Rtree);
	}
    return maxH;
}
int returnCount(Node* root)  //还是层次遍历,得到最后两层的所有节点
{
    int count = 0;
	queue<Node*> q;
	q.push(root);
	while(!q.empty())
	{
		Node* now = q.front();
		q.pop();
        if(now->height==maxH||now->height==maxH-1){
            count++;
        }
		if(now->Ltree != NULL) q.push(now->Ltree);
		if(now->Rtree != NULL) q.push(now->Rtree);
	}
    return count;
}
int main(){
    int n;
    int num;
    cin >> n;
    Node* root = new Node;
    cin >> num;   //先把第一个数插进去
    root->data = num;
    root->Ltree = NULL;
    root->Rtree = NULL;
    root->height = 0;
    for(int i=1;i<n;i++){
        cin >> num;
        Insert(root,num,1);
    }
    maxH = layerorder(root);
    cout << returnCount(root);
    return 0;
}
根据引用的定义,二叉搜索树具有以下性质: 1. 任一节点的左子树中所有节点的键值小于该节点的键值; 2. 任一节点的右子树中所有节点的键值大于等于该节点的键值; 3. 任一节点的左右子树都是二叉搜索树。 根据引用的描述,我们可以通过递归来构造二叉搜索树。具体来说,对于一个序列,首先确定序列的起始点作为根节点,然后从起始点的下一个节点开始遍历,直到找到第一个比根节点大或等于的节点作为右子树的起始点,而左子树的节点则是在起始点和右子树起始点之间的节点。如果在遍历过程中存在比根节点小的节点,说明该序列不是二叉搜索树。 根据引用,如果输入序列是一棵二叉搜索树或其镜像进行前序遍历的结果,那么首先在一行中输出"YES",然后在下一行输出该树的后序遍历结果。如果输入序列不是二叉搜索树,则输出"NO"。 所以,对于问题L2-004这是二叉搜索树吗?C,我们可以使用上述方法来判断输入序列是否是一棵二叉搜索树。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [天梯赛L2-004 这是二叉搜索树吗? (25 )](https://blog.csdn.net/weixin_50026222/article/details/122836219)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [PTA L2-004 这是二叉搜索树吗?](https://blog.csdn.net/qq_51504747/article/details/127817010)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值