Tensorlayer学习笔记——LSTM

一、完整代码 import tensorflow as tf import tensorlayer as tl import numpy as np import pandas as pd from statsmodels.tsa.tsatools import lagmat from sklea...

2017-12-14 21:33:12

阅读数 2179

评论数 0

Tensorlayer学习笔记——卷积神经网络

一、先看代码 import tensorflow as tf import tensorlayer as tl sess = tf.InteractiveSession() # 导入数据 X_train, y_train, X_val, y_val, X_test, y_test = tl.fi...

2017-12-13 21:17:37

阅读数 3091

评论数 2

Tensorlayer学习笔记——多层神经网络

一、简单粗暴,先看代码 import tensorflow as tf import tensorlayer as tl sess = tf.InteractiveSession() # 导入数据 X_train, y_train, X_val, y_val, X_test, y_test =...

2017-12-11 22:01:12

阅读数 3510

评论数 5

python的30个编程技巧

从公众号上看到了一篇文章《30个python编程技巧!》,觉得有些挺有用的,有的也一直在用,就挨个实现了一下。    1、原地交换两个数字 In [1]: x, y =10, 20 print(x, y) y, x = x, y pri...

2017-12-02 16:30:37

阅读数 4001

评论数 0

欢迎关注个人微信公众账号~

欢迎关注个人公众账号扫码关注~ 这个账号会发一些AI方面的技术资料整理、科研资源分享等,也会发摄影、读书、电影、感悟等生活方面的内容欢迎关注、互相交流~,平时比较忙,所以做不到日更,但我会尽力不定期更新~

2017-11-16 12:44:01

阅读数 245

评论数 0

【deeplearning.ai】第二门课:提升深层神经网络——权重初始化

一、初始化 合理的权重初始化可以防止梯度爆炸和消失。对于ReLu激活函数,权重可初始化为: 也叫作“He初始化”。对于tanh激活函数,权重初始化为: 也称为“Xavier初始化”。也可以使用下面这个公式进行初始化: 上述公式中的l指当前处在神经网络的第几层...

2017-10-11 18:48:28

阅读数 1673

评论数 0

【deeplearning.ai】第二门课:提升深层神经网络——正则化的编程作业

正则化的编程作业,包括无正则化情况、L2正则化、Dropout的编程实现,编程中用到的相关理论和公式请参考上一篇博文。 问题描述:原问题是判断足球运动员是否头球,在此省略问题背景,其实就是二分类问题。有以下类型的数据,蓝点为一类,红点为一类 导入需要的扩展包,reg_utils.p...

2017-10-10 09:59:00

阅读数 1272

评论数 0

【deeplearning.ai】第二门课:提升深层神经网络——正则化

一、逻辑斯特回归的正则化 在损失函数后面加上L2正则化项: 其中正则化项: 不对b使用正则化是因为w已经是高维参数矢量,几乎涵盖了所有的参数,而b只是一个标量,可以忽略。当然也可以对b进行正则化,不会产生什么影响。 也可以使用L1正则化: L1正则化使w是稀疏的,即w中有很多0。目前...

2017-10-09 18:38:10

阅读数 190

评论数 0

【deeplearning.ai】第二门课:提升深层神经网络——偏差和方差

吴恩达deeplearning.ai课程第二门:提升深层神经网络的笔记。水平有限,欢迎提出错误、交流讨论~ 一、偏差和方差 通过训练集和验证集来看偏差和方差。 偏差可以理解为训练集的表现,方差可以理解为验证集的表现。训练集的误差大(欠拟合)则偏差高,训练集的误差低但验证集误差大(欠拟合)则方差高。...

2017-09-23 16:42:32

阅读数 1112

评论数 0

【deeplearning.ai】Neural Networks and Deep Learning——深层神经网络

吴恩达的deeplearning.ai公开课学习笔记。最近忙忘了整理,课程已被锁定,没能把编程作业保留下来……所以只把之前的笔记、公式整理了一下。水平有限,如有错误欢迎指出~ 一、多层神经网络 1、神经网络结构 以四层网络为例: 一些符号说明: 上一篇博文介绍了浅层网...

2017-09-23 10:11:39

阅读数 207

评论数 0

【deeplearning.ai】Neural Networks and Deep Learning——浅层神经网络

吴恩达的deeplearning.ai公开课,第二周内容的学习笔记。 一、基础知识 1、浅层神经网络结构 此网络为2层。在说神经网络的层数时,不包括输入层。 2、前向传播 训练时循环每个样本: 可以设: 将其向量化,去掉for循环: ...

2017-08-30 15:14:19

阅读数 1809

评论数 0

【deeplearning.ai】Neural Networks and Deep Learning——逻辑斯特回归

吴恩达的deeplearning.ai公开课,第二周内容的学习笔记。 一、基础知识 1、训练样本: 矩阵大小为nx行m列,即样本数为m个,特征数为nx 标签: 权重:nx行1列 偏置:一个实数 输出: 激活函数: 2、loss函数:表征期望输出与实际输...

2017-08-28 15:19:06

阅读数 3004

评论数 8

scikit-learn 支持向量机算法库使用小结

【注】转载于http://www.cnblogs.com/pinard/p/6117515.html 1. scikit-learn SVM算法库使用概述     scikit-learn中SVM的算法库分为两类,一类是分类的算法库,包括SVC, NuSVC,和LinearSV...

2017-03-24 20:21:31

阅读数 407

评论数 0

【EM算法】在高斯混合模型中的应用及python示例

一、EM算法 EM算法是一种迭代算法,用于含有隐含变量的概率模型参数的极大似然估计。设Y为观测随机变量的数据,Z为隐藏的随机变量数据,Y和Z一起称为完全数据。 观测数据的似然函数为: 模型参数θ的极大似然估计为: 这个问题只有通过迭代求解,下面给出EM算法的迭代求解过程: ...

2017-03-23 15:04:11

阅读数 9635

评论数 7

【k近邻法】简单原理及python示例

一、k近邻法,k-NN k近邻法是一种懒惰学习,没有明显的训练学习过程,对于输入的新的实例,根据其k个最近的训练实例来确定其所属类别。k值选择、距离度量和分类决策规则是k近邻法的三个基本要素。k值的选择会对算法结果产生重大影响,开始时k值越大分类性能会越来越好之后k再增大分类效果会逐渐下降,最优...

2017-03-23 12:25:51

阅读数 441

评论数 0

numpy的random模块

简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.3760...

2017-03-11 09:44:51

阅读数 268

评论数 0

【Logistic回归】原理及Python代码示例

1、基本原理 1.1   Logistic分布 X是随机变量,X服从Logistic分布即X满足下式: 分布函数的图像如下: X取值在正负无穷大之间,P(X)在0-1之间取值,呈S型单调上升曲线。 1.2   二项Logistic回归 二项Log...

2017-03-06 23:23:46

阅读数 3006

评论数 0

【朴素贝叶斯分类】原理及python程序示例

1、基本原理 1.1 贝叶斯公式 有训练集T={(x1,y1),(x2,y2)……,(xn,yn)},由P(X,Y)独立同分布产生。X为输入空间,即样本的属性。Y为输出空间,即样本的分类结果,设有k类,每类为ck。套用贝叶斯公式可得: 其中P(Y=ck|X=x)为后验...

2017-03-05 15:50:53

阅读数 2687

评论数 0

【决策树】熵及ID3算法Python示例

1、决策树学习 有如下数据集: 序号 天气 是否周末 是否有促销 销量 1 坏 是 是 高 2 坏 是 是 高 3 坏 是 是 高 4 坏 否 是 高 5 坏 是 是 高 ...

2017-03-01 22:50:27

阅读数 3484

评论数 0

TensorFlow及深度学习相关资料积累汇总【不定期更新】

此为学习TensorFlow及深度学习方面时收集到的一些资料,不定期汇总到这里,与大家一起学习、交流、讨论。 1、文档、书籍 TF官方文档中文版 首本中文教程:TensorFlow实战(京东) TF入门教程集合 TensorFlow For Machine Intelligence...

2017-02-17 14:00:38

阅读数 2283

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭