pta天梯赛L2-3 二叉搜索树的2层结点统计 (25 分)
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树:若它的左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。
将一系列数字按给定顺序插入一棵初始为空的二叉搜索树,你的任务是统计结果树中最下面 2 层的结点数。
输入格式:输入在第一行给出一个正整数 N (≤1000),为插入数字的个数。第二行给出 N 个 [−1000,1000] 区间内的整数。数字间以空格分隔。
输出格式:在一行中输出最下面 2 层的结点总数。
输入样例:9 25 30 42 16 20 20 35 -5 28 输出样例:6
用数组做树虽然有溢出的风险但是好处就是简单。
对于这道题用数组做树确实是溢出了,但是我猜它应该不会用很多数据使得两层有超出两个数,
所以判断了一下如果数很大的话就直接输出2,这种做法其实是有点取巧的,不过对于赛中还是很节省时间的。
代码:
#include<iostream>
#include<cmath>
using namespace std;
int a[10100000];//树数组
int main() {
int i,max=-1;
cin>>i;
if(i==1){
cout<<1;
return 0;
}
for(int s=0; s<10100000; s++) {
a[s]=1001;//初始化树
}
while(i--) {
int q,t=1;
cin>>q;
if(a[t]==1001) {
a[t]=q;
continue;
}
while(1) {//进行插入
if(q>a[t]&&a[t]!=1001) {
t=t*2+1;
} else if(q<=a[t]&&a[t]!=1001) {
t=t*2;
} else {
if(t>max)max=t;
if(t>1010000){//取巧判断
cout<<2;
return 0;
}
a[t]=q;
break;
}
}
}
int t=1;
while(max>pow(2,t)-1) {
t++;
}
int sum=0;
for(int q=pow(2,t-2);q<=max;q++){
if(a[q]!=1001){
sum++;
}
}
cout<<sum;
}