Tensorflow2(二)神经网络原理——深度学习要解决的问题

机器学习流程

数据获取->特征工程->建立模型->评估与应用

特征工程的作用

  • 数据特征决定了模型的上限
  • 预处理和特征提取是最核心的
  • 算法与参数选择决定了如何逼近上限

深度学习应用领域

计算机视觉以及自然语言处理。

计算机视觉

图像分类任务:一张图片被表示成三维数组的形式,每个像素的值从0到255。
计算机视觉的挑战:照射角度、形状改变、部分遮蔽、背景混入等。

机器学习常规套路

1、收集数据并给定标签
2、训练一个分类器
3、测试、评估

神经网络基础

线性函数

从输入到输出的映射。一个输入图像经过得分函数f(x,W)后,得到该输入为每个类别的得分。
f(x,W) = Wx+b。W权重参数,b偏置参数。
假设10个类别,32 x 32 x 3的输入,则W为10 x 3072,b为10 x 1。表示为对10个不同类别的权重参数和偏置微调。
多组权重参数构成了决策边界。

损失函数

神经网络既能分类,又能回归。二者损失函数不同。来衡量当前权重参数的结果。
如果损失函数的值相同,那么意味着两个模型一样吗?不一样。因此,我们要加入正则化。
损失函数 = 数据损失 + 正则化惩罚项

Softmax分类器

如何把一个得分值转换成一个概率值?
先对得分值做exp映射,之后进行归一化处理。然后计算损失值:Li = -logP(Y=yi | X=xi)
sigmoid函数

前向传播

由W和x能计算出f=Wx,得出得分值,基于真实标签值与概率值计算损失值,再加入正则化惩罚项R(W),就可以得到损失。
之后更新模型需要用到反向传播(梯度下降)

反向传播

梯度下降方法
-加法门单元:均等分配
-Max门单元:给最大的
-乘法门单元:互换的感觉

神经网络整体架构

-层次架构:输入层、隐藏层、输出层
-神经元:数据的量、矩阵大小
-全连接
-非线性:每一步矩阵操作后都有非线性变换

神经元个数对结果的影响

神经元个数并非越多越好,要考虑过拟合的情况。

正则化和激活函数

惩罚力度越小,越符合训练集的结果,越容易产生过拟合。
常用的激活函数:Sigmoid、Relu、Tanh等非线性变换。
不使用Sigmoid函数:梯度消失现象。由于个别层的影响使得梯度为零了。

数据预处理

不同的预处理结果会使得模型效果发生很大的差异。
标准化。

参数初始化

通常我们使用随机策略来进行参数初始化。

过拟合风险解决方法

除了正则化,还有DROP-OUT。
在神经网络训练的过程中,每次在每一层随机杀死部分神经元。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值