07-图4 哈利·波特的考试 (25分)
哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。
现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念4个字符;而如果带猫去,则至少需要念6个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。
输入格式:
输入说明:输入第1行给出两个正整数N (≤100)和M,其中N是考试涉及的动物总数,M是用于直接变形的魔咒条数。为简单起见,我们将动物按1~N编号。随后M行,每行给出了3个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。
输出格式:
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出0。如果有若干只动物都可以备选,则输出编号最小的那只。
输入样例:
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例:
4 70
解题思路
将给的边数据一一读入构建的图中;
用floyd算法把图的矩阵表示变成最短路径矩阵;
在最短路径最近中找出每一行的最大值的最小值;
1.构建图
分为图结构函数;
图初始化函数;
边结构函数;
边插入函数;
总构建函数;
#include<iostream>
using namespace std;
//floyd算法,用邻接矩阵保存图方便
#define INFINITY 65535
#define MaxVertexNum 100
typedef int Vertex;
typedef int WeightType;
typedef struct GNode * PtrtoGNode;
struct GNode { //图结构
Vertex Nv; //图的顶点数
Vertex Ne; //图的边数
WeightType G[MaxVertexNum][MaxVertexNum]; //存放各个边的权重
};
typedef PtrtoGNode MGraph;
MGraph CreateGraph(int n){ //构建空图的函数
MGraph Graph = new struct GNode;
Graph->Nv=n;
Graph->Ne=0;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
Graph->G[i][j]=INFINITY; //权值初始化为极大值
//方便后序的floyd方法
return Graph;
}
//边的结构
typedef struct ENode *PtrtoENode;
struct ENode{
//边有左右两个结点
Vertex V1; //左结点
Vertex V2; //右结点
WeightType Weight; //边的权重
};
typedef PtrtoENode Edge;
//插入边的insert函数
void InsertEdge(MGraph Graph, Edge E) //把E插入Graph
{
//Graph->Ne+=1; //已读入边则不需要计数
Graph->G[E->V1][E->V2]=E->Weight;
Graph->G[E->V2][E->V1]=E->Weight;
//传入的是指针,所以不需要引用即可以改变参数
}
MGraph BuildGraph(){ //建图函数
int N,M;
cin>>N>>M; //n为结点总数,m为魔条咒术——边数
MGraph Graph = CreateGraph(N);
Graph->Ne=M;
//编号为1-n,保存为0-n-1,
if(N!=0){
for(int i=0;i<M;i++)
{
Edge E= new struct ENode;
cin>>E->V1>>E->V2>>E->Weight;
--E->V1;
--E->V2;
InsertEdge(Graph,E);
}
}
return Graph;
}
2.floyd算法
把一个带权邻接矩阵变为任意两条边的最短路径矩阵;
void Floyd(MGraph Graph, WeightType D[][MaxVertexNum])
{
Vertex i,j,k;
//初始化D,把图里面各个边的权值赋值给D
for( i =0 ;i<Graph->Nv;i++)
for( j =0;j<Graph->Nv;j++)
D[i][j]=Graph->G[i][j];
//三重循环,将D变为最短路径
for(k=0;k<Graph->Nv;k++)
for(i=0;i<Graph->Nv;i++)
for(j=0;j<Graph->Nv;j++)
if(D[i][k]+D[k][j]<D[i][j])
D[i][j]=D[i][k]+D[k][j];
//无边为极大值不会用来计算
}
if ( i==j && D[i][j]<0 ) /* 若发现负值圈 */
若i==j时,最短路径<0,则说明出现负值圈;
3.FindAnimal函数
找到每一行的最大值,比较得出最小值;
并记录该点的i值,为要带的动物,序号为i+1;
i==j时跳过,不需要走;
void FindAnimal(MGraph G) //传入一个图
{
WeightType D[MaxVertexNum][MaxVertexNum];
WeightType MaxDist;
WeightType MinDist;
Vertex Animal;
Floyd(G,D);
//将D变为最短路径列表
MinDist = INFINITY; //求最大值里的最小值
for(int i=0;i<G->Nv;i++){
MaxDist = -1;
for(int j=0;j<G->Nv;j++)
{
if(MaxDist<D[i][j]&&i!=j) //i!=j很关键,自己到自己的距离肯定不算
MaxDist=D[i][j];
}
//找到一行的最大值
if (MaxDist == INFINITY)
//说明有该行动物无法变出的动物
{
cout<<"0"<<endl;
return;
}
if(MinDist>MaxDist)
{
MinDist = MaxDist;
Animal=i+1; //编号为i+1
}
}
cout<<Animal<<" "<<MinDist<<endl;
}
或者写两个函数
WeightType FindMaxDist(WeightType D[][MaxVertexNum],Vertex i , int N)
{
WeightType MaxDist;
Vertex j;
MaxDist = 0;
for( j =0 ;j<N;j++)
if(i!=j &&D[i][j]>MaxDist)
MaxDist = D[i][j];
return MaxDist;
}
//
//找动物 函数
void FindAnimal(MGraph G) //传入一个图
{
WeightType D[MaxVertexNum][MaxVertexNum];
WeightType MaxDist;
WeightType MinDist;
Vertex Animal;
Floyd(G,D);
//将D变为最短路径列表
MinDist = INFINITY; //求最大值里的最小值
//
for(int i=0;i<G->Nv;i++)
{
MaxDist=FindMaxDist(D,i,G->Nv); //传入数组,行号,行内个数
//找到一行的最大值
if (MaxDist == INFINITY)
//说明有该行动物无法变出的动物
{
cout<<"0"<<endl;
return;
}
if(MinDist>MaxDist)
{
MinDist = MaxDist;
Animal=i+1; //编号为i+1
}
}
cout<<Animal<<" "<<MinDist<<endl;
}
6.main函数
int main()
{
MGraph G = BuildGraph();
FindAnimal(G);
return 0;
}
总结
该题复习了图的邻接矩阵表示法构建;
练习了floyd算法,求多源带权路径;
给出一个带权的邻接矩阵表示图,可以由floyd算法转化为两条边的最短路径矩阵;
for(k=0;k<Graph->Nv;k++)
for(i=0;i<Graph->Nv;i++)
for(j=0;j<Graph->Nv;j++)
if(D[i][k]+D[k][j]<D[i][j])
D[i][j]=D[i][k]+D[k][j];
复杂度O(N^3);