【模板】中国剩余定理(CRT)

【模板】中国剩余定理

Part 1. 中国剩余定理是干什么的

用于求解如下问题:

给定 n n n 个线性同余方程,如:
{ x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 )                        ⋮ x ≡ a n ( m o d m n ) \begin{cases} x\equiv a_1\pmod {m_1}\\ x\equiv a_2\pmod {m_2}\\ \;\;\;\;\;\;\;\;\;\;\;\vdots\\ x\equiv a_n\pmod {m_n} \end{cases} xa1(modm1)xa2(modm2)xan(modmn)
保证 ∀ i , j \forall i,j i,j 满足 gcd ⁡ ( m i , m j ) = 1 \gcd(m_i,m_j)=1 gcd(mi,mj)=1,求出 x x x 的最小非负整数解。

Part 2. 中国剩余定理的求解

M = ∏ i = 1 n m i , M i = M m i , M i t i ≡ 1 ( m o d m i ) M=\prod\limits_{i=1}^n m_i,M_i=\dfrac{M}{m_i},M_it_i\equiv 1\pmod {m_i} M=i=1nmi,Mi=miM,Miti1(modmi)
则任意解 x = M k + ∑ i = 1 n a i M i t i x=Mk+\sum\limits_{i=1}^n a_iM_it_i x=Mk+i=1naiMiti,最小非负整数解 x min ⁡ = ∑ i = 1 n a i M i t i x_{\min}=\sum\limits_{i=1}^na_iM_it_i xmin=i=1naiMiti

算法流程:

  1. 计算出 M = ∏ i = 1 n m i M=\prod\limits_{i=1}^n m_i M=i=1nmi
  2. 遍历每一个方程,求出 M i = M m i M_i=\dfrac{M}{m_i} Mi=miM,用扩展欧几里得算法求出 t i t_i ti
  3. 得到 ∑ i = 1 n a i M i t i \sum\limits_{i=1}^na_iM_it_i i=1naiMiti

总时间复杂度 O ( n log ⁡ n ) \mathcal{O}(n\log n) O(nlogn)

Part 3. 证明

考虑第 i i i 个方程,对于 ∀ j ≠ i ∈ [ 1 , n ] \forall j\neq i\in[1,n] j=i[1,n],显然有 a j M j t j ≡ 0 ( m o d m i ) a_jM_jt_j\equiv 0\pmod {m_i} ajMjtj0(modmi)

所以 ∑ j = 1 n a j M j t j ≡ a i M i t i ≡ a i ( m o d m i ) \sum\limits_{j=1}^na_jM_jt_j\equiv a_iM_it_i\equiv a_i\pmod{m_i} j=1najMjtjaiMitiai(modmi)

Part 4. 代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=5e5+5;
inline int read(){
    char op=getchar();
    int w=0,s=1;
    while(op<'0'||op>'9'){
        if(op=='-') s=-1;
        op=getchar();
    }
    while(op>='0'&&op<='9'){
        w=(w<<1)+(w<<3)+op-'0';
        op=getchar();
    }
    return w*s;
}
int Pow(int a,int k,int mod){
    int ans=1;
    while(k){
        if(k&1) ans=(ans%mod*a%mod)%mod;
        a=(a%mod*a%mod)%mod;
        k>>=1;
    }
    return ans;
}
void exgcd(int a,int b,int &x,int &y){
    if(b==0){
        x=1,y=0;
        return;
    }
    exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
}
int inv(int x,int mod){return Pow(x,mod-2,mod);}
int M=1ll,a[N],b[N],m[N],t[N],ans=0;
signed main(){
    int n=read();
    for(register int i=1;i<=n;i++) a[i]=read(),b[i]=read();
    for(register int i=1;i<=n;i++) M=M*a[i];
    for(register int i=1;i<=n;i++){
        m[i]=M/a[i];
        int y=0;
        exgcd(m[i],a[i],t[i],y);
        if(t[i]<0) t[i]+=a[i];
    }
    for(register int i=1;i<=n;i++) ans=(ans+(b[i]%M*m[i]%M)%M*t[i]%M)%M;
    printf("%lld",(ans+M)%M);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值