【数学】数数

题目描述

作为一名普及组选手,小 A 喜欢数数。
一天,小 A 学习了排列相关的知识。定义一个长度为 n n n 的序列 p 1 , . . . , n p_{1,...,n} p1,...,n 是一个 n n n 阶排列,当且仅当 p 1 , . . . , n p_{1,...,n} p1,...,n 都是 [ 1 , n ] [1,n] [1,n] 中的正整数且它们两两不同。
小 A 想数排列。为了让数排列更有趣,小 A 决定加入一个限制:
对于一个 n n n 阶排列 p p p,小 A 会构造一个长度为 n n n 的序列 Q ( p ) Q(p) Q(p),其中 Q ( p ) p i = i Q(p)_{p_i}=i Q(p)pi=i。小 A 称排列 p p p 是优秀的,当且仅当 p p p 的字典序严格小于 Q ( p ) Q(p) Q(p)。即存在一个 i i i 使得 ∀ 1 ≤ j < i , p j = Q ( p ) j \forall 1\leq j<i,p_j=Q(p)_j ∀1j<i,pj=Q(p)j p i < Q ( p ) i p_i<Q(p)_i pi<Q(p)i
现在,小 A 想了一个数 n n n,他希望对于每个 [ 1 , n ] [1,n] [1,n] 间的 m m m ,计算好的 m m m 阶排列数量,在开始数这样的排列数量前,小 A 给了你一个质数 mod ⁡ \operatorname{mod} mod,希望你先求出好的 m m m 阶排列数量对 mod ⁡ \operatorname{mod} mod 取模的结果。
为了避免极其大的输出,设 v n v_n vn 表示好的 n n n 阶排列数量对 mod ⁡ \operatorname{mod} mod 取模的结果,你只需要输出 ⊕ i = 1 n v i \oplus_{i=1}^nv_i i=1nvi,即所有 v 1 , … , v n v_1,\ldots,v_n v1,,vn 的异或和。这样小 A 在自己数错的时候就有大约 1 − 1 mod ⁡ 1-\dfrac {1}{\operatorname{mod}} 1mod1 的概率发现自己数错了,并重新数一遍。

n ⩽ 1 0 7 n\leqslant 10^7 n107

题解

Q Q Q 显然是 p p p 的逆排列,所以 p p p 进行两次变换后一定会变回 p p p,如果 p ≠ Q p\neq Q p=Q,则这两个排列一定有一个小于另一个。

所以我们考虑求出 p = Q p=Q p=Q 的个数,每个长度为 i − 1 i-1 i1 的排列都可以加一位 i i i 来构成新的长度为 i i i 的排列,同时每一个长度为 i − 2 i-2 i2 的排列都可以理解为两个数形成一个环,对于每种排列会形成 i − 1 i-1 i1 种。所以:
d p n = d p n − 1 + ( n − 1 ) × d p n − 2 dp_{n}=dp_{n-1}+(n-1)\times dp_{n-2} dpn=dpn1+(n1)×dpn2

于是总答案显然等于:
a i = 1 2 ( i ! − d p i ) a_i=\dfrac{1}{2}(i!-dp_i) ai=21(i!dpi)

时间复杂度 O ( n ) \mathcal{O}(n) O(n)

#include<bits/stdc++.h>
#define int long long
#define mid ((l+r)>>1)
#define fir first
#define sec second
#define lowbit(i) (i&(-i))
using namespace std;
const int N=1e7+5;
inline int read(){
    char op=getchar();
    int w=0,s=1;
    while(op<'0'||op>'9'){
        if(op=='-') s=-1;
        op=getchar();
    }
    while(op>='0'&&op<='9'){
        w=(w<<1)+(w<<3)+op-'0';
        op=getchar();
    }
    return w*s;
}
int mod;
int Mul(int a,int b){return (a*b)%mod;}
int Add(int a,int b){return (a+b)%mod;}
int Dec(int a,int b){return (a-b+mod)%mod;}
int Pow(int a,int k){
    int ans=1;
    while(k){
        if(k&1) ans=Mul(ans,a);
        a=Mul(a,a);
        k>>=1;
    }
    return ans;
}
int inv(int x){return Pow(x,mod-2);}
int a[N],jc[N];
signed main(){
    int n=read(),m=read();
    mod=m,a[0]=a[1]=1;
    const int inv2=inv(2);
    for(register int i=2;i<=n;i++) a[i]=Add(a[i-1],Mul(a[i-2],i-1));
    jc[0]=1;
    for(register int i=1;i<=n;i++) jc[i]=Mul(jc[i-1],i);
    int ans=0;
    for(register int i=1;i<=n;i++) ans^=Mul(Dec(jc[i],a[i]),inv2);
    printf("%lld",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值