【莫比乌斯反演】[国家集训队]Crash的数字表格 / JZPTAB

题目链接

P1829 [国家集训队]Crash的数字表格 / JZPTAB

题目大意

求:

∑ i = 1 n ∑ j = 1 m lcm ⁡ ( i , j ) \large\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j) i=1nj=1mlcm(i,j)

题解

首先将 lcm ⁡ \operatorname{lcm} lcm 转成 gcd ⁡ \gcd gcd

∑ i = 1 n ∑ j = 1 m i j gcd ⁡ ( i , j ) \large\sum\limits_{i=1}^n\sum\limits_{j=1}^m\dfrac{ij}{\gcd(i,j)} i=1nj=1mgcd(i,j)ij

考虑对于每一个 gcd ⁡ ( i , j ) \gcd(i,j) gcd(i,j),如何求出他的所有贡献:

∑ d = 1 n ∑ i = 1 n ∑ j = 1 m i j d × [ gcd ⁡ ( i , j ) = d ] \large\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m \dfrac{ij}{d}\times [\gcd(i,j)=d] d=1ni=1nj=1mdij×[gcd(i,j)=d]

由于本质上一定有 i = i ′ d , j = j ′ d i=i^\prime d,j=j^\prime d i=id,j=jd,所以我们换一种枚举方式,把 d d d 全部提出来,则有 i j d = d i ′ j ′ \dfrac{ij}{d}=di^\prime j^\prime dij=dij

∑ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j × [ gcd ⁡ ( i , j ) = 1 ] \large\sum\limits_{d=1}^n d\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor} ij\times [\gcd(i,j)=1] d=1ndi=1dnj=1dmij×[gcd(i,j)=1]

根据反演结论: [ n = 1 ] = ∑ d ∣ n μ ( d ) [n=1]=\sum\limits_{d\mid n} \mu(d) [n=1]=dnμ(d) 可得:

∑ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j × ∑ d ′ ∣ gcd ⁡ ( i , j ) μ ( d ′ ) \large\sum\limits_{d=1}^nd \sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor} ij\times\sum\limits_{d^\prime \mid \gcd(i,j)} \mu (d^\prime) d=1ndi=1dnj=1dmij×dgcd(i,j)μ(d)

s ( n , m ) = ∑ i = 1 n ∑ j = 1 m i j ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) s(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^mij\sum\limits_{d\mid \gcd(i,j)}\mu (d) s(n,m)=i=1nj=1mijdgcd(i,j)μ(d),则原式化为:

∑ d = 1 n d s ( ⌊ n d ⌋ , ⌊ m d ⌋ ) (1) \large\sum\limits_{d=1}^n d s\left(\left\lfloor\dfrac{n}{d}\right\rfloor,\left\lfloor\dfrac{m}{d}\right\rfloor\right)\tag{1} d=1nds(dn,dm)(1)

现在考虑 s ( n , m ) s(n,m) s(n,m) 怎么求,我们把 gcd ⁡ ( i , j ) \gcd(i,j) gcd(i,j) 的所有约数都枚举一下,改变一下式子:

∑ d = 1 n ∑ i = 1 n ∑ j = 1 m i j × [ d ∣ i    and    d ∣ j ] μ ( d ) \large\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m ij\times [d\mid i\;\text{and}\;d\mid j]\mu(d) d=1ni=1nj=1mij×[dianddj]μ(d)

将所有式子归位:

∑ d = 1 n μ ( d ) ∑ i = 1 n ( i × [ d ∣ i ] ) ∑ j = 1 m ( j × [ d ∣ j ] ) \large\sum\limits_{d=1}^n\mu(d)\sum\limits_{i=1}^n(i\times [d\mid i])\sum\limits_{j=1}^m(j\times [d\mid j]) d=1nμ(d)i=1n(i×[di])j=1m(j×[dj])

发现此时还是可以令 i = i ′ d , j = j ′ d i=i^\prime d,j=j^\prime d i=id,j=jd,改变枚举关系:

∑ d = 1 n μ ( d ) d 2 ∑ i = 1 ⌊ n d ⌋ ( i × [ 1 ∣ i ] ) ∑ j = 1 ⌊ m d ⌋ ( j × [ 1 ∣ j ] ) \large\sum\limits_{d=1}^n\mu(d)d^2\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}(i\times [1\mid i])\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}(j\times [1\mid j]) d=1nμ(d)d2i=1dn(i×[1i])j=1dm(j×[1j])

显然 [ 1 ∣ d ] = 1 [1\mid d]=1 [1d]=1,所以这个式子等价于:

∑ d = 1 n μ ( d ) d 2 ∑ i = 1 ⌊ n d ⌋ i ∑ j = 1 ⌊ m d ⌋ j (2) \large\sum\limits_{d=1}^n\mu(d)d^2\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}j\tag{2} d=1nμ(d)d2i=1dnij=1dmj(2)

sum ⁡ ( n , m ) = ∑ i = 1 n ∑ j = 1 m i j \operatorname{sum}(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^mij sum(n,m)=i=1nj=1mij,显然这个式子就等于:

n ( n + 1 ) 2 × m ( m + 1 ) 2 \large \dfrac{n(n+1)}{2}\times \dfrac{m(m+1)}{2} 2n(n+1)×2m(m+1)

可以 O ( 1 ) \mathcal{O}(1) O(1) 处理。考虑式 ( 2 ) (2) (2),我们可以提前预处理出 μ ( d ) d 2 \mu(d)d^2 μ(d)d2 的前缀和,观察 ⌊ n d ⌋ \left\lfloor\dfrac{n}{d}\right\rfloor dn,显然是可以对他数论分块,考虑一大块 ⌊ n d ⌋ , ⌊ m d ⌋ \left\lfloor\dfrac{n}{d}\right\rfloor,\left\lfloor\dfrac{m}{d}\right\rfloor dn,dm 均相同的 d d d,可以直接利用前缀和 O ( 1 ) \mathcal{O}(1) O(1) 求出该块的和,所以这里运用数论分块可以达到 O ( n ) \mathcal{O}(\sqrt{n}) O(n ) 的复杂度。每一块的答案是:

( μ ( r ) r 2 − μ ( l ) l 2 ) × sum ⁡ ( ⌊ n l ⌋ , ⌊ m l ⌋ ) \large(\mu(r)r^2-\mu(l)l^2)\times \operatorname{sum}\left(\left\lfloor\dfrac{n}{l}\right\rfloor,\left\lfloor\dfrac{m}{l}\right\rfloor\right) (μ(r)r2μ(l)l2)×sum(ln,lm)

回到式 ( 1 ) (1) (1),显然对于一大块 ⌊ n d ⌋ , ⌊ m d ⌋ \left\lfloor\dfrac{n}{d}\right\rfloor,\left\lfloor\dfrac{m}{d}\right\rfloor dn,dm 均相同的 d d d s 1 s_1 s1 的值仍然不变,所以我们再利用一次数论分块,这一层也是 O ( n ) \mathcal{O}(\sqrt{n}) O(n ) 的复杂度。每一块的答案是:

l + r 2 × ( r − l + 1 ) × s ( ⌊ n l ⌋ , ⌊ m l ⌋ ) \large\dfrac{l+r}{2}\times (r-l+1)\times s\left(\left\lfloor\dfrac{n}{l}\right\rfloor,\left\lfloor\dfrac{m}{l}\right\rfloor\right) 2l+r×(rl+1)×s(ln,lm)

总复杂度的瓶颈在于线性筛,总时间复杂度 O ( n ) \mathcal{O}(n) O(n)

代码

//你 cnt=1 了吗?
#include<bits/stdc++.h>
#define int long long
#define mid ((l+r)>>1)
#define fir first
#define sec second
#define lowbit(i) (i&(-i))
using namespace std;
const int N=2e7+5;
const int inf=1e18;
struct edge{int to,nxt,l;};
inline int read(){
    char op=getchar();
    int w=0,s=1;
    while(op<'0'||op>'9'){
        if(op=='-') s=-1;
        op=getchar();
    }
    while(op>='0'&&op<='9'){
        w=(w<<1)+(w<<3)+op-'0';
        op=getchar();
    }
    return w*s;
}
//数论部分
const double pi=acos(-1);
const int mod=20101009;
int Mul(int a,int b){return (a%mod*b%mod)%mod;}
int Add(int a,int b){return (a+b)%mod;}
int Dec(int a,int b){return (a-b+mod)%mod;}
int Pow(int a,int k){
    int ans=1;
    while(k){
        if(k&1) ans=Mul(ans,a);
        a=Mul(a,a);
        k>>=1;
    }
    return ans;
}
int gcd(int x,int y){return y==0?x:gcd(y,x%y);}
int lcm(int x,int y){return x/gcd(x,y)*y;}
int inv(int x){return Pow(x,mod-2);}
void exgcd(int a,int b,int &x,int &y){
    if(b==0){
        x=1,y=0;
        return;
    }
    exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
}
const int inv2=inv(2);
int n,m,mu[N],vis[N],p[N],sum[N],cnt=0;
void mobius(){
    mu[1]=1;
    for(register int i=2;i<=min(n,m);i++){
        if(!vis[i]){
            mu[i]=-1;
            p[++cnt]=i;
        }
        for(register int j=1;j<=cnt&&p[j]*i<=min(n,m);j++){
            vis[i*p[j]]=1;
            if(i%p[j]==0){
                mu[i*p[j]]=0;
                break;
            }
            mu[i*p[j]]=-mu[i];
        }
    }
    for(register int i=1;i<=min(n,m);i++) sum[i]=Add(sum[i-1],Mul(Mul(i,i),mu[i]));
}
int solve(int x,int y){
    return Mul(Mul(Mul(x,x+1),inv2),Mul(Mul(y,y+1),inv2));
}
int sqrt2(int n,int m){
    /* 第二层式子
     * ans=\sum\limits_{i=1}^n mu(d)\times d^2 \sum\limits_{i=1}^{n/d}\sum\limits_{j=1}^{m/d}ij
     */
    int l=1,r,ans=0;
    for(l=1;l<=min(n,m);l=r+1){
        r=min(n/(n/l),m/(m/l));
        ans=Add(ans,Mul(solve(n/l,m/l),sum[r]-sum[l-1]));
    }
    return ans;
}
int sqrt1(int n,int m){
    /* 第一层式子
     * ans=\sum\limits_{d=1}^n d\times f(n/d,m/d)
     */
    int l=1,r,ans=0;
    for(l=1;l<=min(n,m);l=r+1){
        r=min(n/(n/l),m/(m/l));
        ans=Add(ans,Mul(Mul(Mul(l+r,inv2),r-l+1),sqrt2(n/l,m/l)));
    }
    return ans;
}
signed main(){
    n=read(),m=read();
    mobius();
    printf("%lld\n",(sqrt1(n,m)+mod)%mod);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值