与机器学习相关的数学家,你认识几个?

机器学习,需要一定的数学基础,也需要一定的代码能力。我们发布了一篇《机器学习的数学基础》,里面有很多数学公式是数学家的名字命名的,然而,好多人不知道那些数学家长什么样子。于是,我们搜集了十位数学家的资料(排名不分先后),看看大家能从图片中叫出几位数学家的名字来?

640?wx_fmt=png

1.艾萨克·牛顿

英国著名物理学家,数学家,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。

640?wx_fmt=png

2.戈特弗里德·威廉·莱布尼茨

德国数学家,我们经常用到“牛顿-莱布尼茨公式”。

640?wx_fmt=png

640?wx_fmt=png

3.约瑟夫·拉格朗日

法国数学家,机器学习经常用到他创建的“拉格朗日对偶”、“拉格朗日中值定理”。

 

640?wx_fmt=png

4.托马斯·贝叶斯

英国数学家,“贝叶斯公式”在机器学习中使用非常广泛。

640?wx_fmt=png

 

640?wx_fmt=png

4.西莫恩·德尼·泊松

 法国数学家,数据分布中的“泊松分布”就是以他的名字命名。

 640?wx_fmt=png

5.布鲁克·泰勒

英国数学家,我们经常用到“泰勒公式”:640?wx_fmt=png

640?wx_fmt=png

6.洛必达

法国数学家,在高等数学求极限的时候,我们经常用到“洛必达法则”。

640?wx_fmt=png

7.卡尔·弗里德里希·高斯

 德国数学家,在机器学习中他的名字肯定不会陌生,比如“高斯分布”、“高斯核函数”。

640?wx_fmt=png

8.伯努利

瑞士数学家,“伯努利分布” 是一种离散分布,有两种可能的结果。1表示成功,出现的概率为p(其中0<p<1)。0表示失败,出现的概率为q=1-p,这种分布在人工智能里很有用。

640?wx_fmt=png

9.德·摩根

 英国数学家,在概率论里,我们经常用到“德. 摩根律”:

640?wx_fmt=png

640?wx_fmt=png

10.拉普拉斯

法国数学家,在概率论和数理统计中,“拉普拉斯分布”非常重要,该分布用于生物、金融和经济学方面的建模。

640?wx_fmt=png


机器学习爱好者qq群:654173748

请关注和分享本公众号:

640

精华文章:

吴恩达老师的机器学习和深度学习课程笔记打印版

吴恩达老师机器学习课程个人笔记在线版

DeepLearning.ai深度学习课程笔记在线版

机器学习的数学基础

科研工作者的神器-zotero论文管理工具

欢迎加入免费星球,获取最前沿认知和精英理念

640?wx_fmt=png

扫码领取资料

640?wx_fmt=png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值