AI 复活已故漫画家手冢治虫,出版新作续写传奇

By 超神经

场景描述:被誉为漫画之神的日本漫画家手冢治虫,已经离世 30 年,成为了很多人永远的回忆。去年,日本半导体公司 Kioxia 发起了一个项目「TEZUKA2020」,用人工智能技术来绘制手冢治虫风格的漫画,希望延续他的作品。

关键词:手冢治虫 新漫画 人工智能

如果漫画家手冢治虫还活着,会在漫画中描绘出什么样的未来?AI 是否能够帮他呈现?

2 月 27 日,由 AI 设计并绘制的已故手冢治虫的新漫画《ぱいどん》(《Paidon》),在漫画杂志《モーニング》(《Morning》)中发表了第一部分。

第二部分还在制作中,发布日期尚未确定

据报道将在 3 月 19 日发布

这部由 AI 设计并绘制的漫画,是如何体现出手冢治虫的风格的?是否足够接近手冢治虫作品的神韵呢?

致敬漫画之神:手冢治虫

被誉为漫画之神的手冢治虫,是现代日式漫画的鼻祖。有人这样形容他:手冢治虫之于日本,如凯撒之于罗马。

他在 24 岁时创作的《铁臂阿童木》轰动日本,26 岁的作品《火之鸟》至今仍普遍被认为是日本漫画界的最高杰作。

很多人认为,手冢治虫被誉为

最伟大的漫画家是实至名归

2019 年 10 月,日本东芝存储器公司 Kioxia 发起名为「TEZUKA2020」的项目,旨在通过 AI 与人类合作,挑战手冢治虫创作新漫画,以此向他致敬。

在 Kioxia 看来,手冢治虫的漫画创造了超越了想象力的形象,他们要记录他为人们留下的记忆,那些曾激发了大家对未来想象的记忆。

今年 2 月 26 日,Kioxia 召开了发布会,表示新漫画完成制作,并介绍了该项目的具体内容。

手冢治虫的儿子手冢真(右二)也参与了该项目

 

AI 续写手冢治虫的未来世界

这部漫画新作的名字叫做《ぱいどん》(Paidon),作品主题仍是手冢治虫一向关心的未来。

新作讲述了在 2030 年的日本,一个无家可归的哲学家 Paidon,失去了记忆,他与机器小鸟 Apollo 共同解决了一系列刑事案件的故事。

作品中也融入了无人机、自动驾驶、

人脸识别等多种人工智能技术

AI 技术通过学习手冢治虫作品的画风和思想,还原手冢治虫的作品,并在此基础上打造新的漫画作品。

据介绍,该漫画对手冢治虫的 65 部作品进行了分析,其中包括《火之鸟》和《怪医黑杰克》等经典作品。

通过分析其作品,人工智能产生了角色设计和基本故事情节。据悉,新漫画的主人公是 AI 学习了 6000 张角色图像之后生成的。之后由专业创作者添加诸如服装和对话之类的元素以完善作品。

机器人绘制漫画新作主角

手冢治虫的儿子和视频创作者手冢真(Makoto Tezuka)也为该项目做出了贡献。

他在东京的新闻发布会上说道,「每当手冢治虫的粉丝说不再能欣赏他的新作品时,我总是感到难过。AI 创造了他的新作品……这正是手冢漫画中描绘的(技术先进的)世界。

「我希望这项技术将被用于培养年轻的漫画家,并将日本漫画的独特文化传播到世界各地。」

实现「高仿」背后的技术

「TEZUKA2020」项目的主要成员,除了 Kioxia 公司的「TEZUKA2020」项目团队之外,庆应义塾大学人工智能和计算专业教授栗原教授(Satoshi Kurihara)也在其中,他主要负责 AI 部分。

在项目发布会上,栗原教授介绍了该项目的具体实现细节。

他们首先将手冢治虫漫画的 65 部主要故事片的数据手动数字化了 29 项,并进行了视野和背景分析。此外,通过将 131 个短故事放到 13 个阶段的场景结构模板中,将它们转换为数据。

将故事分为 13 个部分,转换成数据

然后,使用 Kurihara 实验室的学生开发的 ASBS(自动场景构建系统)创建了约 130 个地块。创建画面时,他们会加入一个具有手冢治虫独特性的参数,让画面看起来更像是他的作品。在此基础上,手冢真进一步提出设想,创作了剧本。

生成角色草稿的过程

对于角色绘图,他们使用了「StyleGAN」的样式模型,并基于 NVIDIA 的真人面部学习模型,以及未来大学开发的技术,从漫画中提取了成千上万手冢治虫的各种角色图像,继而通过迁移学习生成了这些图像。

最终选择的 No.81 角色作为漫画主角

看来,为了模仿手冢治虫,AI 也着实下了不少功夫。

《Paidon》的发布,为近期处于疫情之中的日本带来了一个好消息。不过,有人认为,仅仅通过学习他过去的作品,创作出来的新漫画能够保留几分手冢治虫的神韵呢?

目前,我们知道 AI 创作的艺术作品也层出不穷,但它们是否能够达到那些大神的真正水平呢?

—— 完 ——

扫描二维码,加入 AI 讨论群

获得更多优质数据集

了解人工智能落地应用

关注顶会&论文

回复「读者」了解详情

更多精彩内容(点击图片阅读)


OFDM(正交频分复用)是一种高效的多载波通信技术,它将高速数据流拆分为多个低速子流,并通过多个并行的低带宽子载波传输。这种技术具有高频谱效率、强抗多径衰落能力和灵活的带宽分配优势。 OFDM系统利用大量正交子载波传输数据,子载波间的正交性可有效避免码间干扰(ISI)。其数学表达为多个离散子载波信号的线性组合,调制和解调过程通过FFT(快速傅立叶变换)和IFFT(逆快速傅立叶变换)实现。其关键流程包括:数据符号映射到子载波、IFFT转换为时域信号、添加循环前缀以减少ISI、信道传输、接收端FFT恢复子载波数据和解调原始数据。 Matlab是一种广泛应用于科研、工程和数据分析的高级编程语言和交互式环境。在OFDM系统设计中,首先需掌握Matlab基础,包括编程语法、函数库和工具箱。接着,根据OFDM原理构建系统模型,实现IFFT/FFT变换、循环前缀处理和信道建模等关键算法,并通过改变参数(如信噪比、调制方式)评估系统性能。最后,利用Matlab的绘图功能展示仿真结果,如误码率(BER)曲线等。 无线通信中主要考虑加性高斯白噪声(AWGN),其在频带上均匀分布且统计独立。通过仿真OFDM系统,可在不同信噪比下测量并绘制BER曲线。分析重点包括:不同调制方式(如BPSK、QPSK)对BER的影响、循环前缀长度选择对性能的影响以及信道估计误差对BER的影响。 OFDM技术广泛应用于多个领域,如数字音频广播(DAB)、地面数字电视广播(DVB-T)、无线局域网(WLAN)以及4G/LTE和5G移动通信,是这些通信标准中的核心技术之一。 深入研究基于Matlab的OFDM系统设计与仿真,有助于加深对OFDM技术的理解,并提升解决实际通信问题的能力。仿真得到的关键性能指标(如BER曲线)对评估系统可靠性至关重要。未来可进一步探索复杂信道条件下的OFDM性能及系统优化,以适应不同应用场景
51单片机是电子工程领域常用的入门级微控制器,广泛应用于小型电子设备,例如电子时钟。本项目将介绍如何利用51单片机设计一款简单的电子时钟,并通过Keil软件进行程序开发,同时借助Proteus仿真工具进行电路模拟,帮助初学者掌握51单片机的基础应用。 51单片机基于Intel 8051内核,集成了CPU、RAM、ROM、定时器/计数器和I/O端口等功能模块,具有易于编程和性价比高的优势。在电子时钟项目中,主要利用其定时器实现时间的精确计算。Keil μVision是51单片机的常用开发环境,支持C语言和汇编语言编程。开发时,需编写代码以控制单片机显示和更新时间,包括初始化时钟硬件、设置定时器中断、编写中断服务程序以及与LCD显示屏交互等步骤。关键环节如下:一是初始化,配置时钟源(如外部晶振)设定工作频率;二是定时器设置,选择合适模式(如模式1或模式2),设置计数初值以获得所需时间分辨率;三是中断服务,编写定时器中断服务程序,定时器溢出时更新时间并触发中断;四是显示控制,通过I/O端口驱动LCD显示屏显示当前时间。 Proteus是一款虚拟原型设计软件,可用于模拟硬件电路,帮助开发者在编程前验证电路设计。在Proteus中,可搭建51单片机、LCD模块、晶振及电阻、电容等元件,形成电子时钟电路模型。运行仿真后,可观察程序在实际电路中的运行情况,及时发现并解决问题。 实际项目中,51单片机电子时钟还涉及以下知识点:一是时钟信号产生,定时器通过计数外部时钟脉冲实现时间累计,可通过调整晶振频率和定时器初始值设置不同时间间隔;二是LCD接口,需理解LCD的命令和数据传输协议,以及如何控制背光、显示模式、行列地址等;三是中断系统,了解中断概念、中断向量及程序中中断的启用和禁用方法;四是数码管显示,若使用数码管而非LCD,需了解其显示原理及段选、位选的驱动方式。 本项目融合了单片机基础、
在机器人技术领域,机械臂的避障路径规划是一项关键任务,而本压缩包中的资源专注于利用蚁群算法解决三维空间中的路径规划问题。蚁群算法(Ant Colony Optimization,ACO)是一种仿生优化算法,其灵感来源于蚂蚁在寻找食物时的信息素沉积行为,能够有效找到全局最优解,尤其适合复杂路径规划。 蚁群算法由Marco Dorigo等人提出,模拟蚂蚁寻找食物路径时释放信息素的过程。在算法中,每条可能路径被视作“虚拟”蚂蚁的路径,蚂蚁在移动时会留下信息素。信息素浓度会随时间蒸发,同时被新经过的蚂蚁加强。通过迭代,算法优化路径选择,强化高效路径,最终找到全局最优解。 在机械臂避障路径规划中,三维空间路径规划尤为重要。为此,通常将三维空间划分为网格,每个小格子代表一种状态,如无障碍、障碍或未知。通过判断每个格子的状态,确定机械臂的可行移动区域,即“可视区域”。蚁群算法应用于该三维网格,寻找从起点到终点的最佳路径。每只蚂蚁在网格上随机移动时,会考虑信息素浓度和距离因素。高浓度信息素路径更易被选择,短距离路径更具吸引力。经过多次迭代,信息素逐渐积累在最优路径上,从而得出避开障碍物的最短路径。 实际应用中,机械臂路径规划需考虑运动学限制,如关节角度范围、速度限制等,同时实时性也至关重要,算法需快速生成新路径以适应动态环境。因此,蚁群算法常与其他优化方法结合,如遗传算法或粒子群优化,以提升计算效率和路径质量。 压缩包内文件可能包含算法源代码、数据结构定义、模拟环境设定及结果可视化等内容。通过这些资源,学习者可深入了解蚁群算法在机械臂避障路径规划中的实现,并直观理解三维路径规划。该应用涉及机器人学、计算机科学、控制理论等多学科交叉,通过仿真项目,既能加深对算法的理解,又能培养解决实际问题的能力。无论是学术研究还是工业应用,掌握这种路径规划方法都极具价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值