大数据扫黄,是怎样发现你的?

8ab0ad92ea38226ac7d138e238b7ae1a.jpeg

b8a8fe7e31e0f7b56e4ae847eaf0f5ad.jpeg

a984ec88c9eea727d26b0a2ba50ff163.jpeg

9b205beb06124ff2ffe6e7655fdfc648.jpeg

6f18bc414da29e782298e312541885e8.jpeg

6410792d87080278c0a55b93cc22762c.jpeg

扩展阅读

在诸多审查工具中,“AI 鉴黄”是最新也最高效的一种。

简单来说,“AI 鉴黄”就是通过深度神经网络,按照各种描述特征来提取图像中的关键点,比如是否出现皮肤裸露等等,将色情图片与正常图片进行分类。

读到这里,大家可能会发现,“AI 鉴黄”还存在一些严峻的挑战,比如:

1.色情图像和正常图像有很多相似之处,判断非常复杂。游泳、比基尼等图片中同样也有大量裸露皮肤,被错误地归类为色情并删除,很可能影响用户网上冲浪的体验。

2.判断色情的标准不同。法官斯图尔特曾有句名言,我无法定义色情,但当我看到它时,我就知道了。对色情内容的监测也有一定的主观性,AI 往往会根据特征对裸露身体的大卫塑像而“痛下杀手”,却对部分软色情轻松放过。

3.依赖训练数据带来的风险。那么,是不是给 AI 尽可能多地语料就能帮助它提升识别的准确率呢?答案也不行。基于深度学习的黑箱性,攻击者如果知道 AI 鉴黄是根据哪些数据训练出来的,就可以有针对性地攻击、对抗这个模型,使其很快失效。

这也是为什么,人工鉴黄师,即人类审查员,依然还需要兢兢业业地在岗位上为冲浪护航。

a1ff56cf73e967233be7b79a4cb91f64.jpeg

250702a0d8041919681c4c56e006d8c5.jpeg

扫码加好友,加入海归Python编程和人工智能群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值