推荐系统第一课 听课记录,边听边打字模式


推荐系统第一课

罗老师,神秘人物
推荐系统介绍
评估方法
实战
冷启动问题
课程安排
推荐系统怎么产生的。信息太多了,需要推荐算法匹配人和信息。买东西,商店里面一眼都能看清楚,买饮料,直接拿走,不要推荐系统。去超市,需要导购员,去淘宝,需要搜索,更大系统需要推荐系统挖掘信息。未来更多信息,推荐系统也可能无法满足需求。
推荐和搜索区别
推荐被动,搜索主动
搜索意图明确,推荐比较模糊。推荐个性化很强。流量:搜索,头部流量很强。推荐让小众需求得到满足。搜索快速满足,推荐持续服务。评估指标,搜索简明,推荐复杂。
搜索和推荐的关联。
推荐系统存在的理由:
信息过载,用户需求不明确
推荐系统目标:链接用户和物品,发现商品,留住用户和内容生产者,实现商业目标,头条浏览新闻,投广告赚钱。购买各种服务,最终目的都是实现商业目标。
推荐系统用于:日常日常生活中。用三个不同推荐系统为代表,头条新闻产品,快手为代表,短视频推荐,第三个淘宝为代表的商品推荐,最早从亚马逊开始,Netflix影片推荐。每个章节会对比不同的区别。
第二部分:
评估指标,评估方法
用户,网站,内容提供方。
用户:满足需求,获取信息,快乐,扩展视野。获得认可感,很开心
内容提供方:获取长尾流量,获得互动和认可,获得收益;淘宝就是为了获得收益,
网站:留住用户,实现商业目标,
常用的评估指标:准确性,信任度,满意度,实时性,覆盖率,鲁棒性(系统不要崩溃,保证稳定),多样性,可扩展性,新颖性,商业目标,精细度,用户存留。
显示反馈(电影评分,是否喜欢这个推荐),隐式反馈(点击就满意,直接离开就不满意)
准确性:显示高,隐世低。
数量:显示少,隐世多
获取成本:显示高,隐世低。
准确性(学术性):定义:评分预测:RMSE;MAE
topN推荐:精确率和召回率
工业界准确性:和产品有很大关系;头条,点击了,说明对标题,图片认可,阅读-阅读时长-》分享和评论-》关注和付费
快手:播放-》播放完成-》点赞和评论-》关注和跟拍
淘宝评估:点击-》浏览深度-》加入购物车和收藏-》购买-》重复购买和好评
覆盖度:推荐出来的商品占据所有商品的数目
信息熵:衡量信息不确定性,越高,越不确定;
基尼系数:经济学领域,衡量财产分配平衡度的。小于1
分层流量占比:按照销量分层,大于1万的占比多少,大于5000的占比等
多样性:推荐列表中物品不同的种类,
新颖性:从来没有关注过的类别,商品等,一直在看鞋子,突然推荐了其他东西。推荐结果的平均流行度
惊喜性:历史不相似。但是很满意;
这三个指标和用户历史偏好有关。
往往需要牺牲准确性;
Exploitation:选择现在最佳的方案;
Exploration:选择不确定的方案,未来可能有高收益。尝试不同种类
Bandit算法原理:Epsilon-greedy:以1-epsilon的概率选择当前收益最大的臂,以epsilon的概率随机选取一个臂做探索;
upper confidence bound:均值越大,标准差越小,被选中的概率会越来越大;
Thompson Sampling:每个臂维护一个beta(wins, lose)分布,每次用现有的beta分布产生一个随机数,选择随机数最大的臂;
三种的区别:UCB算法返回结果一样的;TS采样有随机化策略;
下面直接拿Python代码开讲:代码还是老师刚写的。
Bandit算法应用:兴趣探索:老虎机收益最高。
冷启动探索:新用户来了,不知道用户的口味,
LinUCB:加入特征信息。用user和item的特征预估回报机器置信区间,选择置信区间上界最大的item推荐,观察回报后更新线性关系的参数,

EE实践:
兴趣扩展:相似话题,搭配推荐,看优衣库,直接扩展到无印良品
人群算法:usercf,用户聚类,相关性不强的人群聚类扩展,
Bandit算法:
graph walking:
平衡个性化推荐和热门推荐比例:平时不看娱乐,突然来个娱乐头条,范冰冰出事了。这个算法就是好算法
随机丢弃用户行为历史;
随机扰动模型参数;

眼前的苟且和远方的田野:
今天成交多少钱,用户明天是否继续买;
探索伤寒用户体验,头条今天给我推荐很多不喜欢的娱乐新闻,我就删除软件了。
探索带来的长期收益评估周期长,KPI压力大。
如何平衡实时兴趣和长期兴趣。
如何平衡短期产品体验和长期系统生态。
如何平衡大众口味和小众需求。
如何避免劣币驱逐良币。
休息5分钟。

评估方法:
问卷调查:成本高
离线评估:在用户看到过的候选集上做评估,且跟线上真实效果存在偏差;智能评估少数指标;速度快,不损害用户体验。
在线评估:A/B testing
实践:离线评估和在线评估相结合,定期做问卷调查

A/B testing:单层实验:分流方法给每个实验组分配一定流量。每个组配置不同的实验参数。
三个组:UI测试,推荐实验,广告实验。
只能支持少量实验,不利于迭代;
实验之间不独立,策略可能相互影响;分流方式不灵活。
多层重叠实验框架:保留单层实验框架易用,快速优点同时,增加可扩展性。
核心思路:
分配函数如何设计?保证分配的均匀性和正交性。
如何处理实验样本的过滤?
分配多大流量可以使实验置信?

推荐系统架构:
2013 NETFLIX:出租影像DVD,类似爱奇艺,视频的推荐。06年举办了百万大奖的比赛,推进了算法的进化。
offline,一天跑一次,online层轻量级,要快,用了逻辑回归。
淘宝2015年的推荐系统架构:底层存储如何,
2016 youtube架构

推荐系统发展阶段:
1.0 关联规则,热门推荐等统计方法。啤酒喝尿布放一起。
2.0 矩阵分解,协同过滤,离线推荐列表计算
3.0 召回+ learning to rank重排序。比较成熟时代2014年以后大规模使用了。
4.0 召回和排序实时化。
5.0 end2end深度学习,一切都是embedding
6.0 智能化推荐系统
比如,手机被其他人用了,是否推荐内容要变化。
头条和快手已经到了5.0.阿里和腾讯滞后了一点,为啥?因为抖音全部依赖于推荐,淘宝不那么依赖推荐,而且新公司历史包袱比较小。

发展趋势:单一模块到多模块;单一目标到多目标;单个场景到多场景;离线计算到实时计算;人工规则到人工智能;浅度模型到深度模型;

推荐系统架构:数据收集,学习,服务过程,还有反馈过程。
学术和工业差距:
数据量从百万到百亿
数据分布:学术稳定,工业变化;
研究问题:学术:定义清晰;工业复杂;
关注点:学术追求精度极致;工业考虑性价比;
评估指标:学术单一,工业多个目标
评估方法:学术离线;工业:在线和问卷调查

召回,预估,排序
学习资料:推荐系统实践,比较老旧,今日头条程序员看书一周,然后搭建系统,推荐系统
三篇论文:
item-based collaborative filtering recommendation algorithms
factorization meets the neighborhood:
matrix factorization techniques for recommender systems;有源码
上面三篇文章一定要看,因为课程会讲这些。

工业实践学习资料:
Facebook实践:recommending items to more than a billion people。需要翻墙
quora是如何做推荐的?
real-time personalization using embeddings for search ranking at airbnb
deep neural networks for youtube recommendations
wide& deep learning for recommender systems
ad click prediction: a view from the trenches

认识你是我们的缘分,同学,等等,学习人工智能,记得关注我。

 

 

微信扫一扫
关注该公众号

《湾区人工智能》

回复《人生苦短,我用Python》便可以获取下面的超高清电子书和代码

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值