从数学上讲,卷积就是一种运算。
某种运算,能被定义出来,至少有以下特征:
首先是抽象的、符号化的
其次,在生活、科研中,有着广泛的作用
比如加法:
a+b
,是抽象的,本身只是一个数学符号
在现实中,有非常多的意义,比如增加、合成、旋转等等
卷积,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分、级数,所以看起来觉得很复杂。
卷积的定义
我们称 (f*g)(n) 为 f,g 的卷积
其连续的定义为:(f∗g)(n)=∫∞−∞f(τ)g(n−τ)dτ
其离散的定义为:(f∗g)(n)=∑−∞∞f(τ)g(n−τ)
这两个式子有一个共同的特征:
这个特征有什么意义?
我们令 x=τ,y=n−τ,那么 x+y=n
就是下面这些直线:
只看数学符号,卷积是抽象的,不好理解的,但是,我们可以通过现实中的意义,来习惯卷积这种运算,正如我们小学的时候,学习加减乘除需要各种苹果、糖果来帮助我们习惯一样。
我们来看看现实中,这样的定义有什么意义。
离散卷积的例子:丢骰子
我有两枚骰子:
把这两枚骰子都抛出去:
求:两枚骰子点数加起来为4的概率为多少?
这里问题的关键是,两个骰子加起来要等于4,这正是卷积的应用场景。
我们把骰子各个点数出现的概率表示出来:
那么,两枚骰子点数加起来为4的情况有:
因此,两枚骰子点数加起来为4的概率为:
f(1)g(3)+f(2)g(2)+f(3)g(1)
符合卷积的定义,把它写成标准的形式就是:
(f∗g)(4)=∑m=13f(4−m)g(m)
连续卷积的例子:做馒头
楼下早点铺子生意太好了,供不应求,就买了一台机器,不断的生产馒头。
假设馒头的生产速度是 f(t),那么一天后生产出来的馒头总量为:
馒头生产出来之后,就会慢慢腐败,假设腐败函数为 g(t)
,比如,10个馒头,24小时会腐败:
想想就知道,第一个小时生产出来的馒头,一天后会经历24小时的腐败,第二个小时生产出来的馒头,一天后会经历23小时的腐败。
如此,我们可以知道,一天后,馒头总共腐败了:
这就是连续的卷积。
图像处理
原理
有这么一副图像,可以看到,图像上有很多噪点:
高频信号,就好像平地耸立的山峰,看起来很显眼。
平滑这座山峰的办法之一就是,把山峰刨掉一些土,填到山峰周围去,用数学的话来说,就是把山峰周围的高度平均一下。
平滑后得到:
计算
卷积可以帮助实现这一平滑算法。
有噪点的原图,可以把它转为一个矩阵:
然后用下面这个平均矩阵(说明下,原图的处理实际上用的是正态分布矩阵,这里为了简单,就用了算术平均矩阵)来平滑图像。
记得刚才说过的算法,把高频信号与周围的数值平均一下就可以平滑山峰。
比如我要平滑 a1,1点,就在矩阵中,取出 a1,1 点附近的点组成矩阵 f , 和 g
进行卷积计算后,再填回去:
要注意一点,为了运用卷积,g虽然和f同纬度,但下标有点不一样:
我用一个图来说明下计算过程:
写成卷积公式就是:
这相当于实现了 g这个矩阵在原来图像上的滑动(准确来说这幅图把 g 矩阵旋转了 180∘)