自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

马同学

公众号:马同学高等数学

原创 如何通俗理解泊松分布?

1 甜在心馒头店 公司楼下有家馒头店: 每天早上六点到十点营业,生意挺好,就是发愁一个事情,应该准备多少个馒头才能既不浪费又能充分供应? 老板统计了一周每日卖出的馒头(为了方便计算和讲解,缩小了数据): 均值为: 按道理讲均值是不错的选择(参见如何理解最小二乘法?),但是如果...

2019-04-12 14:48:40

阅读数 77695

评论数 40

原创 如何理解主元分析(PCA)?

主元分析也就是PCA,主要用于数据降维。 1 什么是降维? 比如说有如下的房价数据: 这种一维数据可以直接放在实数轴上: 不过数据还需要处理下,假设房价样本用 表示,那么均值为: 然后以均值 为原点: 以 为原点的意思是,以 为0,那么上述表格的数字就需要修改下: ...

2018-08-31 12:14:03

阅读数 3288

评论数 2

原创 如何通俗易懂地讲解牛顿迭代法?

五次及以上多项式方程没有根式解(就是没有像二次方程那样的万能公式),这个是被伽罗瓦用群论做出的最著名的结论。 但是,没有王屠夫难道非得吃带毛猪?工作生活中还是有诸多求解高次方程的真实需求(比如行星的轨道计算,往往就是涉及到很复杂的高次方程),这日子可怎么过下去啊? 没有根式解不意味着方程解不出...

2018-08-19 13:02:37

阅读数 25669

评论数 4

原创 为什么正态分布如此常见?

自然界中存在大量的正态分布,比如女性的身高: 图片出自这里。 正态分布的英文名为:Normal Distribution,台湾翻译为常态分布,可见一斑。可是为什么这么常见呢? 每个人都相信它(正态分布):实验工作者认为它是一个数学定理,数学研究者认为他是一个经验公式。 ----加布里埃...

2018-08-01 11:40:34

阅读数 11294

评论数 1

原创 如何理解最小二乘法?

最小平方法是十九世纪统计学的主题曲。 从许多方面来看, 它之于统计学就相当于十八世纪的微积分之于数学。 ----乔治·斯蒂格勒的《The History of Statistics》 1 日用而不知 来看一个生活中的例子。比如说,有五把尺子: 用它们来分别测量一线段的长度,得到的数值分...

2018-07-20 10:14:09

阅读数 47066

评论数 58

原创 如何通俗地理解熵?

熵,是一个热力学的概念。但在历史的发展中,造就了它非常丰富的内涵,进入了很多学科的视野。本文会在数理层面对它进行一个解读,厘清它在逻辑上到底是什么。 1 混乱的熵 很多科普文章中,都提到熵是用来度量混乱的。比如下面这幅动图,单词“Entropy”(熵的英文)可见的时候,熵最小,这个时候最有秩序...

2019-10-08 16:20:53

阅读数 33

评论数 0

原创 如何理解几何分布与指数分布的无记忆性?

在经济学上,有一个概念是沉没成本,大概指的是已经付出的、且不可收回的成本。针对这个概念有一个常见的说法: 这句话的意思是,既然沉没成本不可收回,那么在做选择的时候就不应该考虑它。举一个简单的例子,买票去看电影,放映10分钟你就知道这是一部烂片,那么有两个选项(图片出自沉没成本谬误): ...

2019-09-29 11:45:01

阅读数 245

评论数 0

原创 如何理解多变量函数的极限?

多变量函数的极限是单变量函数极限的扩展,让我们从数列极限的直观开始学习。 1 数列极限的直观 在古希腊的时候,人们就知道可以用等边多边形的面积来逼近圆形的面积: 假设用 ana_nan​ 来表示内接等边 nnn 边形的面积,那么可以用一个数列来描述这个逼近过程: 这个数列的极限就是圆形的面积:...

2019-08-13 16:21:16

阅读数 86

评论数 0

原创 概率论发展的转折点:贝特朗悖论

和所有的数学分支类似,概率论的也是经历了从直觉到严格的过程。其中的一个转折点就是贝特朗悖论。 1 古典派 古典派也就是高中时候学的概率论。它的核心哲学思想是:不充分理由原则。 1.1 不充分理由原则 雅各布·伯努利(1654-1705): 提出,如果因为无知,使得我们没有办法判断哪一...

2019-07-31 15:59:51

阅读数 227

评论数 0

原创 如何通俗地理解协方差和相关系数?

1 正相关与负相关 1.1 相关性 事物之间可能会有关系,这可以通过数据看出。比如要买房的人越多(下图的城镇化率可以简单理解为进城买房的人数),房价就越高,两者的关系称为正相关 : 城镇化有另外一个反作用,降低出生率。城镇化和出生率之间的关系就是负相关 ,也就是说城镇化率越高、出生率会越...

2019-06-25 10:13:03

阅读数 700

评论数 1

原创 如何通俗地理解曲率?

1 地球是圆的 历史上很长的时间,人们都觉得地球是平的: 不过如果在海边,还是容易发现地球其实不是平的。比如极目远眺,发现很远的建筑在海平面以下: 加上麦哲伦环球航行、月全食、太空旅行等各种事实的呈现,人们最终可以确定地球是圆的的了(下图是从月球上看地球)。 之所以这么难发现地...

2019-06-12 15:06:49

阅读数 468

评论数 2

原创 无法理解线性代数怎么办?

无法理解线性代数的原因有很多,本文主要来讲讲各大高校使用的主流教材同济大学版的《线性代数》的问题。 之前写过一篇无法理解高等数学怎么办的文章,对同济大学版的《高等数学》教材进行过一些评论,认为这本教授微积分的主流教材的问题在于坡度太陡了,但逻辑主线是没有问题的,所以我们在创作《马同学单变量微...

2019-05-20 16:15:13

阅读数 2437

评论数 0

原创 如何理解指数分布?

1 泊松分布 指数分布和泊松分布息息相关,所以先简单回忆下之前介绍过的泊松分布。公司楼下有家馒头店,每天早上六点到十点营业: 老板统计了一周每日卖出的馒头(为了方便计算和讲解,缩小了数据),想从中找到一些规律: 从中可以得到最简单的规律,均值: 这个规律显然不够好,如果把营业时...

2019-05-06 10:34:30

阅读数 8782

评论数 3

原创 追寻宇宙的形状--庞加莱猜想

克雷数学研究所在2000年5月24日公布了七大数学难题,被称为千禧数学问题,并且给出悬赏,这些问题每解决一个都可以获得一百万美金的奖金。所有问题都悬而未决,除了庞加莱猜想,本文就来介绍下庞加莱猜想讲的是什么。 1 地球真的是圆的吗? 历史上很长的时间,人们都觉得地球是平的: 中世纪的欧洲...

2019-04-15 11:06:58

阅读数 2038

评论数 0

原创 令人讨厌的是数学课,不是数学----《一个数学家的叹息》

机缘巧合,看到了一本书,深受触动。 书中所说的理念正是马同学一直想去、要去、希望能够做到的,借用书中的话: 数学是理性的音乐。做数学是从事发现与猜测、直觉与灵感的活动;是进入疑惑的状态——不是因为它让你搞不懂,而是因为你给了它意义,而你还不知道你的创造会走向何处;是产生一个突破性的想法;是像...

2019-04-12 17:12:12

阅读数 1019

评论数 1

原创 黎曼猜想到底是什么意思?

2018年,89岁高龄的菲尔兹奖得主,迈克尔·阿蒂亚爵士举行了他最后一次公开的数学报告: 这个报告是关于“黎曼猜想”的证明,报告结束后仅仅三个月,老爷子就溘然长逝。 这次报告到底是不是证明了“黎曼猜想”,我没有资格评论,这需要数学界内部进行审查。哪怕就算结果错的,也有可能指出新的突破方向,...

2019-04-02 10:04:58

阅读数 1134

评论数 0

原创 什么是概率?

1 争论 概率论需要回答的第一个问题就是,什么是概率? 刚接触这门学科的同学可能觉得难以置信,这个问题仍然存在着广泛的争论: 而且这个问题更像是一个哲学问题,而不是数学问题,确实也有不少哲学家参与讨论。 对于概率的定义有几个主流的派别: 频率派 古典派 主观派...

2019-03-12 10:54:48

阅读数 990

评论数 0

原创 概率论的起源

继《线性代数》和《单变量微积分》后,“马同学图解”系列又迎来新的成员 ---- 《概率论与数理统计》,覆盖浙江大学《概率与数理统计》前八章(考研范围),下面是本课程的第一篇文章,欢迎大家试读和购买(微信公众号:马同学高等数学,菜单“图解”中购买)。 1 随机现象 在生活中有些现象是注定的,比如...

2019-03-05 11:53:18

阅读数 434

评论数 0

原创 流浪的太阳系

这个标题蹭了一下《流浪地球》的热度,不过下面要讲述的内容确实让我不由自主的用了这个标题。 1 银河系的旅人 我们知道月亮是围绕地球旋转的(图片出处): 而地球以及太阳系中的各大行星又是围绕太阳旋转的(图片出处): 整个太阳系又在银河系里“流浪”,围绕着银河系旋转,最终太阳系的运动轨...

2019-02-20 18:22:37

阅读数 198

评论数 0

原创 能够证明“3=0”吗?

1 “3=0”吗? 之前在我们课程的答疑群中,有同学问了这么一个问题,已知: 从已知出发可以得到两个代数式: 综合 、 两个代数式可以得到: 将这个解代回原来的方程去验算: 错在哪里? 2 代数基本定理 根据代数基本定理: n次复系数多项式方程在复数域内有且只有n个...

2019-01-28 17:21:08

阅读数 680

评论数 0

提示
确定要删除当前文章?
取消 删除