自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

马同学

公众号:马同学高等数学

  • 博客(82)
  • 收藏
  • 关注

原创 如何通俗理解泊松分布?

1 甜在心馒头店公司楼下有家馒头店:每天早上六点到十点营业,生意挺好,就是发愁一个事情,应该准备多少个馒头才能既不浪费又能充分供应?老板统计了一周每日卖出的馒头(为了方便计算和讲解,缩小了数据):均值为:按道理讲均值是不错的选择(参见如何理解最小二乘法?),但是如果每天准备5个馒头的话,从统计表来看,至少有两天不够卖,的时间不够卖:你“甜在心馒头店”又不是...

2019-04-12 14:48:40 242378 100

原创 如何理解主元分析(PCA)?

主元分析也就是PCA,主要用于数据降维。1 什么是降维?比如说有如下的房价数据:这种一维数据可以直接放在实数轴上:不过数据还需要处理下,假设房价样本用 表示,那么均值为:然后以均值 为原点:以 为原点的意思是,以 为0,那么上述表格的数字就需要修改下:这个过程称为“中心化”。“中心化”处理的原因是,这些数字后继会参与统计运算,比如求样本方差,中间就包...

2018-08-31 12:14:03 8261 4

原创 如何通俗易懂地讲解牛顿迭代法?

五次及以上多项式方程没有根式解(就是没有像二次方程那样的万能公式),这个是被伽罗瓦用群论做出的最著名的结论。但是,没有王屠夫难道非得吃带毛猪?工作生活中还是有诸多求解高次方程的真实需求(比如行星的轨道计算,往往就是涉及到很复杂的高次方程),这日子可怎么过下去啊?没有根式解不意味着方程解不出来,数学家也提供了很多方法,牛顿迭代法就是其中一种。1 切线是曲线的线性逼近要讲牛顿迭代法之前...

2018-08-19 13:02:37 71810 14

原创 为什么正态分布如此常见?

自然界中存在大量的正态分布,比如女性的身高:图片出自这里。正态分布的英文名为:Normal Distribution,台湾翻译为常态分布,可见一斑。可是为什么这么常见呢?每个人都相信它(正态分布):实验工作者认为它是一个数学定理,数学研究者认为他是一个经验公式。----加布里埃尔·李普曼1 高尔顿钉板弗朗西斯·高尔顿爵士(1822-1911),查尔斯·达尔文的表弟...

2018-08-01 11:40:34 23339 3

原创 如何理解最小二乘法?

最小平方法是十九世纪统计学的主题曲。 从许多方面来看, 它之于统计学就相当于十八世纪的微积分之于数学。----乔治·斯蒂格勒的《The History of Statistics》1 日用而不知来看一个生活中的例子。比如说,有五把尺子:用它们来分别测量一线段的长度,得到的数值分别为(颜色指不同的尺子):之所以出现不同的值可能因为: 不同厂家的尺子的生产精度不同 ...

2018-07-20 10:14:09 129602 120

原创 感知机的暴力实现

下面是机器学习的《监督式学习》课程的一篇试读文章,进行了一下重新排版,然后展示在这里。由于格式的限制,缺少了一些习题、可运行的代码、证明、注释等,可能会导致解释差强人意,所以介意的同学可以直接访问感知机的暴力实现,以获得最佳的阅读体验。1 寻找合适的和简单来说,感知机就是要找到一条直线(或者说超平面),将两类点分开(下图中的为横坐标,为纵坐标):我们知道,直线(或者超平面)的方程为(下面的):本文就来介绍感知机如何通过一种看似暴力的方法来寻找合适的和,从而找到将两类点分开的直线.

2020-11-20 12:33:01 30 1

原创 为什么要引入矩阵这个数学工具?它能简化哪些不用矩阵会复杂的问题?

之前在“为什么学习线性代数”中宽泛地谈过我们需要矩阵的原因,本文这里再介绍一个我们课程《监督式学习》中通过矩阵来提升运算效率的例子。先简单介绍下,之前在“如何理解线性回归”中介绍过线性回归的方法(简称为“老方法”),当特征较多时老方法效率很低(比如下文会提到的波士顿房价数据集),修改为矩阵算法之后效率会提高非常多倍:下面就来解释其中的细节,文中有一些复杂的公式,忽略应该也不会影响理解大意。1 线性回归既然是和老方法比较,那么先简单复述下“如何理解线性回归”中介绍的老方法,需要了解细节的可

2020-11-20 11:04:52 37 1

原创 如何理解方差分析和F分布?

2020年初,整个世界遭受了新冠病毒地袭击,直到今天人类还没有走出阴霾。抗疫前线的医学专家们日以继夜地工作,同时进行着多种药物的临床试验。那么怎么判断哪一种药物效果更好呢?这就要说到一百年前问世的方差分析。1 费希尔的简介罗纳德·艾尔默·费希尔爵士(英语:Sir Ronald Aylmer Fisher,1890-1962,),英国统计学家、演化生物学家与遗传学家。现代统计学与现代进化论的奠基者之一。安德斯·哈尔德称他是“一位几乎独自建立现代统计科学的天才”:本文下面要讲到的方差分析、F

2020-11-19 16:20:55 135 1

原创 沉没成本不是成本-----通俗解释几何分布与指数分布的无记忆性?

在经济学上,有一个概念是沉没成本,大概指的是已经付出的、且不可收回的成本。针对这个概念有一个常见的说法:这句话的意思是,既然沉没成本不可收回,那么在做选择的时候就不应该考虑它。举一个简单的例子,买票去看电影,放映10分钟你就知道这是一部烂片,那么有两个选项(图片出自沉没成本谬误):此时这张电影票已经消费了,没有办法收回,购买电影票的钱就是沉没成本。这个时候如果想离开电影院就直接离开,不要去考虑为这张电影票付出的金钱。还有很多别的例子,这里就不一一列举了:下面要介绍的几何分布、指数分布

2020-11-19 15:54:24 31 1

原创 如何理解统计中的特征函数?

先说结论,特征函数是随机变量的分布的不同表示形式。一般而言,对于随机变量的分布,大家习惯用概率密度函数来描述。比如说:意思就是服从正态分布,对应的概率密度函数如下:虽然概率密度函数理解起来很直观,但是确实随机变量的分布还有另外的描述方式,比如特征函数。1 关于特征1.1 剪影下面是两个剪影:是同一个人吗?不知道,看不清楚,不过如果知道这两个剪影的特征,比如: 名字 血型 身高 声音 ... 以上特征如果都一样,那么

2020-11-18 16:30:59 52 1

原创 如何理解海森堡的「不确定性原理」?

维尔纳·海森堡(1901-1976),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。海森堡提出了著名的“不确定性原理”:一个运动粒子的位置和它的动量不可被同时确定。我是物理科学的民科,下面关于物理学的内容是个人的理解,望各位同学指正。1 测不准原理“不确定性原理”有另外一个名字:“测不准原理”。1926年,海森堡任聘为哥本哈根大学尼尔斯·波耳研究所的讲师,协助尼尔斯·波耳做研究。隔年,他发表了论文《论量子理论运动学与力学的物理内涵》(On the physical c..

2020-11-18 16:09:04 67 2

原创 为什么样本方差的分母是 n-1?

先把问题完整的描述下。如果已知随机变量的期望为,那么可以如下计算方差:上面的式子需要知道的具体分布是什么(在现实应用中往往不知道准确分布),计算起来也比较复杂。所以实践中常常采样之后,用下面这个来近似:其实现实中,往往连的期望也不清楚,只知道样本的均值:那么可以这么来计算:那这里就有两个问题了: 为什么可以用来近似? 为什么使用替代之后,分母是? 我们来仔细分析下细节,就可以弄清楚这两个问题。1 为什么可以用来近似?举个例子,假设服从这么一

2020-11-18 15:09:45 33 1

原创 如何理解t检验、t分布、t值?

t检验、t分布、t值其实都是同一个数学概念中的不同部分。1 t检验的历史阿瑟·健力士公司(Arthur Guinness Son & Co.)是一家由阿瑟·健力士(Arthur Guinness)于1759年在爱尔兰都柏林建立的一家酿酒公司:不过它最出名的却不是啤酒,而是《吉尼斯世界纪录大全》:1951年11月10日,健力士酒厂的董事休·比佛爵士(Sir Hugh Beaver)在爱尔兰韦克斯福德郡打猎时,因为没打中金鸻,于是和同行们争论哪种鸟飞得最快,彼此争论不休。由于当时

2020-11-18 11:49:25 180 1

原创 如何理解假设检验、P值?

讲概率、论统计,肯定要从抛硬币说起啊,这才是正确打开姿势嘛。1 什么是假设检验?你说你的硬币是公平的,也就是“花”和“字”出现的概率是差不多的。然后,你想和我打赌,作为一个资深的理智赌徒,我怎能听信你的一面之词,我提出要检查下你的硬币到底是不是公平的,万一是两面“花”怎么办?电影里面不是经常出现这样的桥段?你神色紧张,死活不让我检查,后来我们提出了折衷的方案,抛几次硬币,看看结果是不是公平的。总共扔了两次,都是“花”朝上,虽然几率是,但是也正常,继续扔。总共扔了四次,也都是“花”

2020-11-18 11:29:56 53 1

原创 如何理解置信区间

置信区间,就是一种区间估计。先来看看什么是点估计,什么是区间估计。1 点估计与区间估计以前很流行一种刮刮卡:游戏规则是(假设只有一个大奖): 大奖事先就固定好了,一定印在某一张刮刮卡上 买了刮刮卡之后,刮开就知道自己是否中奖 那么我们起码有两种策略来刮奖: 点估计:买一张,这就相当于你猜测这一张会中奖 区间估计:买一盒,这就相当于你猜测这一盒里面会有某一张中奖 很显然区间估计的命中率会更高(当然费用会更高,因为风险降低了)。接下来,我们看看置信

2020-11-18 11:17:15 101 2

原创 如何理解概率论中的“矩”?

给我一个支点和一根足够长的棍子,我就可以举起整个地球。----阿基米德对比物理的力矩,你会发现,概率论中的“矩”真的是很有启发性的一个词。1 力矩大家应该都知道物理中的力矩,我这里也不展开说细节了,用一幅图来帮助大家回忆一下:上图中,两边能保持平衡,只要满足下面的式子就可以了(很粗糙的式子,没把力作为向量来考虑):其中,都称为力矩。可以看出上图的大,小,但由于杆子长度不同,仍然可以取得平衡。利用上图的原理,我们就可以制作出秤:2 概率论中的“矩”在概率..

2020-11-18 10:50:21 31 1

原创 如何证明sinx<x

不等式:这是微积分中非常重要的一个不等式,从它出发,推动逻辑齿轮,可以得到很多结论:下面介绍该不等式的两种证明方式: 一种出自同济大学的《高等数学》第七版,该书偏于应用,证明比较直觉 另外一种参考自陶哲轩的《实分析》,该书数学味道更浓,证明比较严格 本文之所以要介绍这两种证明方法,是因为它们是旧时代数学和新时代数学的代表。1 《高等数学》中的证明同济大学的《高等数学》第七版:虽然之前我们对它的可读性有一些批评,但作为广为使用的教材,在严谨性和教学性上,还是

2020-11-17 16:51:42 61 2

原创 微积分的历史(六):发展之泰勒公式(下)

之前说了泰勒公式的来历,我们这里继续说下如何直观理解泰勒公式的代数形式,以及泰勒公式最重要的收敛半径。1 泰勒公式的代数形式1.1 定义从泰勒公式的定义开始吧:设是一个正整数。如果定义在一个包含的区间上的函数在点处次可导,那么对于这个区间上的任意都有:,其中的多项式称为函数在处的泰勒展开式,是泰勒公式的余项且是的高阶无穷小。----维基百科泰勒公式的定义看起来气势磅礴,高端大气。如果的话,就是麦克劳伦公式,即,简单起见,我们下面着重讨论麦克劳伦公式,可以认为和泰勒公式

2020-11-17 16:23:36 26

原创 微积分的历史(五):发展之泰勒公式(上)

布鲁克·泰勒(1685-1731),英国牛顿学派的代表人物,曾经加入判决牛顿和莱布尼茨微积分发明权的委员会。因为发明了泰勒公式而名垂青史。先来看看泰勒公式是干什么?1 泰勒公式是干什么的?之前说过,切线是曲线的线性近似(下面是函数在0点处的切线):很明显,切线的近似只能在切点附近起作用,能不能让这种近似的作用范围更大?有的,就是通过曲线来近似:上面其实就是泰勒公式公式在不同阶展开的效果,展开的多项式越多近似效果越好。所以泰勒公式简单来说,就是用幂级数来近似原来的函数(为什..

2020-11-17 15:45:53 33 1

原创 微积分的历史(三):起源之莱布尼茨

戈特弗里德·威廉·莱布尼茨(1646-1716),德意志哲学家、数学家,历史上少见的通才,获誉为十七世纪的亚里士多德。牛顿和莱布尼兹都是一时无两的人物,可是历史就是爱让大师扎堆出现(可能也是时势造英雄吧),所谓一山不容二虎,除非一公一母。这里就简单说一下莱布尼兹、牛顿关于争夺微积分发明权的公案。牛顿可能是性格上非常害怕批评的人,所以他不是很愿意发表自己的发现,怕被人议论。举个例子你就知道牛顿这方面的性格有多极端。牛顿在《光与色的理论》中提出光的粒子性,就遭到了认定光具有波动性的英国皇家学会实..

2020-11-17 11:30:18 46 1

原创 微积分的历史(二):起源之牛顿

艾萨克·牛顿(1643 - 1727),伟大的物理学家、数学家、天文学家、自然哲学家和炼金术士。在2005年更是力压爱因斯坦,被评为“科学史上最有影响力的人”。牛顿研究微积分,主要还是为了物理上的计算服务的,我们来看下牛顿是怎么推导微积分的本节会讲到以下一些内容: 牛顿的微积分 牛顿微积分的一点问题 1 牛顿的微积分牛顿归纳微积分的整体思路是: 证明求导是不定积分的逆运算,即微积分第一基本定理(《高等数学》同济版为求积分上限函数的导数) 进而推出牛顿-莱布..

2020-11-17 11:19:38 47 2

原创 微积分的历史(一):起源之背景

作为高等数学的基础,微积分肯定不是沙漠之花。各种需求、各种思想的交汇最终孕育出了它。1 微积分产生的时代背景兴趣或许是动力,不过我觉得需求是更好的动力。1.1 研究天文要说一个充满好奇心的人,不会对天空中的日升月落、浩瀚的宇宙产生兴趣,那实在是不可能。可以说,在对星空的研究中产生了科学。到了中世纪的西方,整个科学界最重要的课题就是研究天文。当时的宗教认为“科学”是接近上帝的梯子(我对宗教史不熟悉啊,求不打脸),另外上帝居所也是在宇宙深处,所以研究天文学大部分目的是为了证明上帝的存在,谁知

2020-11-17 10:57:05 94 1

原创 无穷小量究竟是否为零

注:本文所有的讨论都基于经典微积分,非标准分析不在讨论范围内。我们都知道,无穷大有特定的数学符号,但无穷小有吗?其实无穷小也有个写法,而且 和无穷大有关系:发现了吗?其实无穷小是“0”旋转,而无穷大是0/0(或者说无穷小/无穷小)的简写(在作出这个命名的年代,把0/0作为无穷大看也是正常的,那时候的数学没有现在这么严格)。既然无穷小和0写法都这么像,它们有什么关系吗?1 无穷小的历史1.1 无穷小的由来无穷小最早指的是比零大,但绝对值小于任意正实数的“数”。即:若,则为无

2020-11-16 16:43:22 111 1

原创 矩阵函数与线性函数

1 从矩阵到矩阵函数本单元的前面几课,先介绍了在历史上,矩阵是作为线性方程组的标记法引入进来的:然后又根据解线性方程组的高斯消元法,引入了矩阵乘法的行观点:最后据此,推出了等价的矩阵乘法列观点和矩阵乘法点积观点(也就是矩阵乘法的定义)。1.1 矩阵函数是线性函数随着数学的发展,在现代观点中,矩阵被看作一种线性函数,它的定义域是向量空间,值域也是向量空间:本课就来解释: 什么是函数?为什么说矩阵是函数? 什么是线性函数?为什么说矩阵是线性函数? 2 函数的定

2020-11-12 11:47:30 44 1

原创 矩阵的幂运算与转置

1矩阵的幂运算矩阵除了乘法、加法之外,还有一些别的运算。本课就把后面会用到的运算一并介绍了。类似于称为的幂运算,矩阵也有幂运算,也称为矩阵的幂:设是方阵,定义:其中为正整数。比如,已知:那么有:2对角阵的幂运算假如有对角阵:那么根据对角阵乘法的运算规律可知:3矩阵的转置运算下面介绍矩阵的转置运算:把矩阵的行换成同序数的列,该操作称为矩阵的转置运算。转置运算后可以得到一个新矩阵,该矩阵称为的转置矩阵,记作。或者用符号表示如下:转置运算

2020-11-11 16:46:56 62

原创 矩阵的加法与乘法

1 同型矩阵与矩阵相等两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵。如果与是同型矩阵,并且他们的对应元素都相等,则矩阵与矩阵相等,记做:简单来说,长得一样的矩阵就是同型矩阵:如果同型矩阵的对应元素都相等,则两个矩阵相等:2 矩阵加法之前引入矩阵乘法的时候,我们就把矩阵的每一行看作一个行向量,所以矩阵可以看作行向量的集合,所以它的加法和向量加法很像。2.1 合法性正如同维向量才能相加一样,同型矩阵才可以相加:2.2 规则对应的位置相加即可,和向量

2020-11-10 16:21:58 54

原创 高斯消元法

上一课介绍的解线性方程组的方法,叫作高斯消元法。不过虽然冠以数学王子高斯之名,但是各个国家的古代数学中均已涉及该方法。比如中国的《九章算术》:我们以一个线性方程组为例,来介绍下高斯消元法的通用步骤:第一步,多次消元(下面介绍的顺序不重要,主要是理解思路):第二步,多次回代:最后,方程两侧除以未知数的系数,得到结果:1 高斯消元法的例子运用高斯消元法来求解下面的线性方程组:解:(1)第一步,多次消元。首先将第一个方程乘上加到第二个方程中,得.

2020-11-10 15:38:17 34

原创 矩阵函数和线性方程组

1 矩阵函数1.1 向量函数高中就学习过函数,函数的定义域是实数,比如正弦函数:上一单元介绍了向量空间,如果以向量空间作为定义域,这样的函数就称为向量函数:高中学的函数的定义域是实数,之前解释过,实数轴对应向量空间:所以可说高中学的函数是特殊的向量函数。或者说引入向量空间后,扩展了之前的函数概念。1.2 矩阵函数有一类特殊的向量函数,它的定义域是向量空间,值域也是向量空间(还有一些别的特殊之处,后面会逐步介绍):这样的函数称为矩阵函数,通常用来表示。本单元就来

2020-11-06 16:36:19 41 1

原创 数量积

1 欧几里得空间前面几课完整地介绍了向量空间:但是如果想用向量空间来描述世界,还缺少一些必要的条件:长度和角度。1.1欧氏几何大名鼎鼎的欧几里得在他大名鼎鼎的著作《几何原本》中:通过几何(即欧氏几何),从小学到高中,我们学习的就是欧氏几何来描述、研究这个世界:1.2 欧几里得空间和欧式几何相比,向量空间缺少了两个很重要的概念,长度和角度:为了可以推演欧氏几何,就需要给向量空间添加长度和角度,这样就得到了: ...

2020-11-05 16:25:23 21 1

原创 向量空间的基

1 向量空间的基1.1 回顾继续往下之前,先总结下前面所学的。先是学习了向量,然后把同维数的向量放在集合中构成了向量组:然后通过向量组得到张成空间,也就是关注的核心,向量空间:1.2 定位定义向量空间之后,我们就需要去研究它。就如研究宇宙空间,需要把每一颗恒星的位置标注出来一样(下图是肉眼可见的恒星,标注在银道坐标系中):同样的,研究向量空间,就需要定位其中的每个点,这就是本节课需要学习的内容2 基的定义大家可能对宇宙空间中定位恒星比较陌生,下面来举一个对地.

2020-11-05 11:44:43 73 1

原创 张成空间

我们这个五彩斑斓的世界:只需要三原色就可以混合出来:下面通过数学来表示上面说的颜色混合。首先,三原色可以表示为向量组:该向量组的所有的线性组合,可以混合出所有的颜色:所有颜色构成一个向量空间,也就是之前提到过的色彩空间:1 张成空间更一般的,某向量组的所有的线性组合一定构成向量空间:某向量组,其所有线性组合构成的集合为向量空间,也称为向量组的张成空间,记为,即:也称为向量组所张成假设向量组,其所有线性组合构成的集合为则内的任意两个元素进行加法.

2020-11-03 16:39:24 73

原创 向量空间

这节课介绍向量空间这个概念。借助向量空间,可以表示我们关心的直线、平面、立方体等线性的几何对象:1 宇宙空间如果将宇宙空间看作无限大的立方体的话,那么向量空间甚至可以表示整个宇宙(至少可以表示宇宙线性的部分):向量空间和宇宙空间两者都有“空间”二字,确实有共通之处。先看看宇宙空间有什么特点: 包含各种物质,比如星体、生物、能量等等 物质进行的各种运动(比如恒星燃烧、生物行走等等),结果依然在空间内,比如恒星燃烧化为能量,依然在宇宙中 和宇宙空间进行类比,向量空间...

2020-10-13 15:00:05 85

原创 线性组合与线性相关

切入本课的主题之前,先科普一下人眼是怎么感知颜色的。人眼的构成是这样的:别的医学名词咱们不关心,就说右边的感光细胞。可以看出人眼大致有三种感光细胞:红色、绿色、蓝色的感光细胞。如果通过特定的光线,单独“激活”这三种感光细胞,我们分别看到红色、绿色、蓝色,这些光线也就是红光、绿光、蓝光:1 调色板下面开始引入本课的主题:线性表示。这个概念其实我们并不陌生,就是小学美术老师教过的调色:1.1 等比混合这三种颜色的光线同时作用在这三种感光细胞上,混合在一起,就得到了我们所看到的颜色

2020-09-25 11:18:42 160

原创 向量的加减和乘除

物理中,力的合成其实就是向量的加法。比如,下面是两条小船在牵引一艘大船,合力可以通过平行四边形法则(右上)或者三角形法则(右下)计算得到:三角形法则在计算多个向量相加的时候非常方便,所以下面着重介绍三角形法则。1.1 三角形法则下面用动画来演示下通过三角形法则如何让两个向量相加:、、三者最后形成了一个三角形,所以称为三角形法则。三角形法则逐帧讲解的话就是:、首尾相接连接和并且这种首尾相连的操作,可以拓展到多个向量相加,,比如:1.2 代数定义更一.

2020-09-25 11:05:09 84 1

原创 向量

向量,这是一个古老的概念。亚里士多德就知道力可以分解为向量,伽利略更是清晰的阐述了向量如何合成。下面来看看在物理中是如何定义向量的。1 物理中的向量1.1 有向线段高中物理就学过,是有长度、有方向的有向线段,可以用来表示力、速度或加速度等有大小、有方向的物理量。比如下面篮球的瞬时速度可以用向量来表示:将向量的起点与终点分别标上字母、,则向量可以记作,头上的箭头方向表示由指向:1.2 相等的向量物理中规定,只要长度相同、方向一致就是相等的向量。比如下面表示小车速度的向量,虽然起

2020-09-18 17:09:35 164 1

原创 为什么学习线性代数

“为什么学习线性代数?线性代数到底在讲什么?”刚接触这门学科的同学可能都会提类似的问题。简短的回答就是:(1)我们所处的世界、宇宙太复杂了,很多现象都无法理解,更谈不上用数学去描述;(2)有一些符合特定条件的复杂问题,可以转化为简单的线性问题,线性问题就完全可以理解、完全可以被数学所描述(怎么把复杂问题转为线性问题是别的学科要解决的,比如说微积分);(3)线性代数就是研究怎么解决线性问题的。简短的回答结束,下面会在该回答基础展开,给出更详细...

2020-09-18 16:47:42 204 1

原创 什么是机器学习?

这篇文章是我们机器学习《监督式学习》课程的一篇试读,感兴趣的同学可以查看我们的微信公众号:马同学高等数学,进一步了解课程。机器学习算是人工智能的一个分支,所以让我们从人工智能说起。1 人工智能精确定义人工智能很难,大概就是机器获得了类似人类的智慧,甚至成为了超人:很长的一段时间人工智能只是一个幻想,直到20世纪40年代电脑的出现,才有一批科学家开始严肃地探讨实现的可能性。经过快一个世纪的努力,逐渐取得了一些成果,比如自动驾驶:比如两足机器人:当然,这些离人

2020-09-16 10:12:22 213

原创 为什么学习线性代数_test

“为什么学习线性代数?线性代数到底在讲什么?”刚接触这门学科的同学可能都会提类似的问题。简短的回答就是:(1)我们所处的世界、宇宙太复杂了,很多现象都无法理解,更谈不上用数学去描述;(2)有一些符合特定条件的复杂问题,可以转化为简单的线性问题,线性问题就完全可以理解、完全可以被数学所描述(怎么把复杂问题转为线性问题是别的学科要解决的,比如说微积分);(3)线性代数就是研究怎么解决线性问题的。简短的回答结束,下面会在该回答基础展开,给出更详细...

2020-09-10 14:55:26 241

原创 明天太阳一定会升起吗?兼谈拉普拉斯平滑

皮埃尔-西蒙,拉普拉斯侯爵(1749-1827),法国著名的天文学家和数学家:曾经提出一个问题:千百万年以来,每天太阳都会升起。但是,可以就此推断明天太阳一定会升起吗?1 火鸡问题这个问题似乎有点古怪,但仔细想想,如果不具备其它的关于太阳的知识,仅凭数据确实没有办法肯定地说,明天太阳一定会升起。英国哲学家波特兰.罗素曾经描述过一个类似的问题:一个农场里有一群火鸡,农场主每天中午十一点来给它们喂食。火鸡中的一名科学家观察这个现象,一直观察了近一年都没有例外,于是它在感恩节当天向所有火鸡

2020-06-29 10:38:39 327

原创 如何直观地理解矩阵的秩?

矩阵的秩可以直观地理解为筛眼的大小:下面就来解释这句话是什么意思?1 矩阵的作用假设对于向量 x1 、 x2、 x3、x4 有:上述关系可以用图像来表示,左侧的向量 x1 、 x2、 x3、x4,在 A 的作用下,变为了右侧的向量 y1 、y2 、y3 、y4 :将各个向量依次连起来就得到了两个矩形。那么可以这么理解,左侧的矩形在 A 的作用下,变为了右侧的矩形:2 矩阵的秩如果 A 的秩不一样,那么左侧的矩形在 A 的作用下,右侧就可能得到不同的图形:有

2020-06-06 20:22:22 874

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除