卷积运算
内容选自吴恩达老师的深度学习课程当中,在此记录。以边缘检测为例,介绍卷积是如何进行运算的。
一、边缘检测示例
首先是垂直边缘检测,对左边的一个6×6的灰度图像进行卷积运算,中间3×3的即为我们通常说的核或者过滤器。从左边的矩阵左上角开始,利用过滤器在该矩阵上进行计算,对应元素相乘后求和,得到一个数值,例如左上角第一个3×3的矩阵,进行卷积后,得到右边4×4矩阵的第一个元素,即-5,以此类推。
若以图像的形式进行展示,经过边缘检测后,卷积计算结果如上图所示。假设左边即为原始图像,由于像素分布的原因,左边亮,右边暗,经过卷积后,得到图像中的中间垂直边缘,即原始图像中明暗分割的地方。
有垂直边缘检测,也有水平边缘检测,对垂直边缘检测的核旋转90度即可用于水平边缘检测,原理过程如上图所示。
总结:1.卷积即是在图像中利用过滤器进行操作,每次卷积计算后,都会缩小图像的尺寸。
2.卷积后得到的图像矩阵大小规律:
卷积运算原理
最新推荐文章于 2025-03-03 18:34:05 发布