YBTOJ&洛谷P3209:平面图判定(2-SAT)

本文介绍了一种解决平面图是否存在的问题的方法,通过关键性质:当边数大于3倍节点数减6时平面图不存在。然后在考虑边数与节点数同阶的情况下,利用2-SAT算法进行判断。代码实现中包含了图的构建和2-SAT的 Tarjan 算法,最终根据颜色冲突情况确定答案。
摘要由CSDN通过智能技术生成

文章目录


传送门

解析

关键性质是一个定理:若m>3*n-6,必然不存在合法的平面图
这谁知道啊
不过这题应该往也许图过于稠密时必然无解这方面想
所以我们只需要考虑m、n同阶的情况就行了
这个时候我们直接暴力判断跑2-SAT就行了

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=35605;
const int M=30005;
const int mod=998244353;
const double eps=1e-6;
ll read(){
	ll x=0,f=1;char c=getchar();
	while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
	while(isdigit(c)){x=x*10+c-'0';c=getchar();}
	return x*f;
}
int n,m;
struct node{
	int to,nxt;
}p[2005000];
int fi[N],cnt;
void addline(int x,int y){
	p[++cnt]=(node){y,fi[x]};
	fi[x]=cnt;
	//printf("x=%d y=%d\n",x,y);
}
int u[M],v[M],pos[N];
bool judge(int i,int j){
	return (u[i]<u[j]&&v[i]>u[j]&&v[i]<v[j])||(v[i]>v[j]&&u[i]>u[j]&&u[i]<v[j]);
}
int dfn[N],low[N],zhan[N],col[N],tim,tot,top;
void tarjan(int x){
	dfn[x]=low[x]=++tim;zhan[++top]=x;
	for(int i=fi[x];~i;i=p[i].nxt){
		int to=p[i].to;
		if(!dfn[to]){
			tarjan(to);low[x]=min(low[x],low[to]);
		}
		else if(!col[to]) low[x]=min(low[x],dfn[to]);
	}
	if(low[x]==dfn[x]){
		col[x]=++tot;
		while(zhan[top]!=x){
			col[zhan[top--]]=tot;
		}
		top--;
	}
	return;
}
void init(){
	memset(fi,-1,sizeof(fi));cnt=-1;
	memset(dfn,0,sizeof(dfn));memset(low,0,sizeof(low));
	memset(col,0,sizeof(col));memset(zhan,0,sizeof(zhan));
	tim=top=0;tot=2*m;
}
int main(){
	int T=read();
	while(T--){
		n=read();m=read();
		init();
		for(int i=1;i<=m;i++){
			u[i]=read(),v[i]=read();
		}
		for(int i=1;i<=n;i++){
			int x=read();pos[x]=i;
		}
		if(m>3*n-6){
			printf("NO\n");continue;
		}
		for(int i=1;i<=m;i++){
			u[i]=pos[u[i]];v[i]=pos[v[i]];
			if(u[i]>v[i]) swap(u[i],v[i]);
			//printf("%d: (%d %d)\n",i,u[i],v[i]);
		}
		for(int i=1;i<=m;i++){
			//if(v[i]==u[i]+1) continue;
			for(int j=i+1;j<=m;j++){
				//if(v[j]==u[j]+1) continue;
				if(judge(i,j)){
					addline(i,j+m);addline(j,i+m);
					addline(j+m,i);addline(i+m,j);
					//printf("i=%d j=%d ok\n",i,j);
				}
			}
		}
		for(int i=1;i<=m*2;i++){
			if(!dfn[i]) tarjan(i);
		}
		int flag=1;
		for(int i=1;i<=m;i++){
			if(col[i]==col[i+m]){
				flag=0;break;
			}
		}
		if(flag) printf("YES\n");
		else printf("NO\n");
	}
}
/*
2
1 4
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值