二分栈,就是通过二分维护的栈
(逃)
解析
本题的决策单调性可以说是显然
但是本题是同维度(其实只有一维)自左向右转移,分治的写法是不能奏效的
所以我们使用决策点调性的另一种实现方法:二分栈
具体来说,维护[1,n]各自的最优转移点
一开始的转移点全是0,把三元组
(
0
,
1
,
n
)
(0,1,n)
(0,1,n)push入栈,分别表示转移点和左右端点
然后从1扫到n
扫到i的时候,利用i当前的最优决策点进行转移
然后尝试更新后面的最优决策点
不断取出栈顶,如果栈顶区间在 l 的位置还是不如当前的转移,显然这个区间没有用了,弹出栈顶
然后对于无法使之弹出的区间,二分出其与自己在何时会发生最优转移的变化,如果这个变化的位置pl<=n,把
(
i
,
p
l
,
n
)
(i,pl,n)
(i,pl,n)入栈,并把之前的栈顶区间右端点改为pl-1
然后就解决啦!
注意事项
至少是我易错的
二分的时候当calc相等的时候不能草率!可能是都返回了inf,所以要按照这个时候那个绝对值的正负分类讨论
while(st<ed){
int mid=(st+ed)>>1;
ll a=calc(j,mid),b=calc(i,mid);
if(a<b||(a==b&&sum[mid]-sum[i]-l-1>0)) ed=mid;
else st=mid+1;
}
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define il inline
#define debug(a) fprintf(stderr,a)
const int N=1e5+100;
const int M=3e6+100;
const int mod=998244353;
inline ll read(){
ll x=0,f=1;char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
int n,p,l;
ll f[N],sum[N];
ll ksm(ll x,ll k){
if(x<0) x=-x;
ll res=1;
while(k){
if(k&1) res*=x;
x=x*x;
k>>=1;
}
return res;
}
inline ll calc(int i,int j){
//printf(" calc:%d %d jd=%lld>%lf\n",i,j,abs(sum[j]-sum[i]-l-1),(1.0*log(1e18-f[i])/log(p)));
if(abs(sum[j]-sum[i]-l-1)&&(f[i]>1e18||p>1.0*log(2e18-f[i])/log(abs(sum[j]-sum[i]-l-1)))) return 2e18+1;
else return f[i]+ksm(sum[j]-sum[i]-l-1,p);
}
#define pr pair<int,int>
#define mkp make_pair
pr q[N];//id st
int st,ed;
char s[N][33];
int pre[N];
int find(int i,int j){
int st=j+1,ed=n+1;
while(st<ed){
int mid=(st+ed)>>1;
ll a=calc(j,mid),b=calc(i,mid);
if(a<b||(a==b&&sum[mid]-sum[i]-l-1>0)) ed=mid;
else st=mid+1;
}
//printf("find:i=%d j=%d st=%d\n",i,j,st);
return st;
}
int a[N],b[N],tot;
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
int T=read();
while(T--){
n=read();l=read();p=read();
for(int i=1;i<=n;i++){
scanf(" %s",s[i]+1);
sum[i]=sum[i-1]+strlen(s[i]+1)+1;
//printf("i=%d sum=%d\n",i,sum[i]);
}
st=ed=1;q[1]=mkp(0,1);
int flag=0;
for(int i=1;i<=n;i++){
while(st<ed&&q[st+1].second<=i) st++;
int now=q[st].first;
pre[i]=now;
f[i]=calc(now,i);
//printf("i=%d now=%d f=%lld\n",i,now,f[i]);
while(st<=ed){
int pl=find(q[ed].first,i);
if(pl<=q[ed].second) ed--;
else{
if(pl<=n) q[++ed]=mkp(i,pl);
break;
}
}
if(st>ed) q[++ed]=mkp(i,i+1);
}
//debug("ok");
if(f[n]>1e18) printf("Too hard to arrange\n");
else{
printf("%lld\n",f[n]);
tot=0;
int pl=n;
while(pl){
b[++tot]=pl;pl=pre[pl];a[tot]=pl+1;
}
for(int i=tot;i>=1;i--){
for(int j=a[i];j<=b[i];j++){
printf("%s",s[j]+1);
if(j!=b[i]) putchar(' ');
}
printf("\n");
}
}
printf("--------------------\n");
}
return 0;
}
/*
3 1
3 1 3
3 2
1 1 2
3 1 3
*/