描述
小 G 是一个出色的诗人,经常作诗自娱自乐。
但是,他一直被一件事情所困扰,那就是诗的排版问题。
一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的。
小 G 给每首诗定义了一个行标准长度(行的长度为一行中符号的总个数),他希望排版后每行的长度都和行标准长度相差不远。
显然排版时,不应改变原有的句子顺序,并且小 G 不允许把一个句子分在两行或者更多的行内。
在满足上面两个条件的情况下,小 G 对于排版中的每行定义了一个不协调度,为这行的实际长度与行标准长度差值绝对值的 P 次方,而一个排版的不协调度为所有行不协调度的总和。
小 G 最近又作了几首诗,现在请你对这几首诗进行排版,使得排版后的诗尽量协调(即不协调度尽量小),并把排版的结果告诉他。
输入描述
第一行包含一个整数 T,表示诗的数量,接下来是 T 首诗,每首诗是一组数据。
每组数据的第一行包含三个整数 N,L 和 P,其中 N 表示这首诗句子的数目,L 表示这首诗的行标准长度,P 的含义参考问题描述。
从第二行开始,每行一个句子,句子由英文字母、数字、标点符号等符号组成(ASCII 码 33∼127,但不包含 -)。
输出描述
对于每组测试数据,若最小的不协调度不超过 1018,则第一行为一个数,表示不协调度。接下来若干行,表示你排版之后的诗。注意:在同一行的相邻两个句子之间需要用一个空格分开。
如果有多个可行解,它们的不协调度都是最小值,则输出任意一个解均可。(本题有 special judge)(由于本题数据量大,展示标准答案时,不展示可行解)
若最小的不协调度超过 1018,则输出
Too hard to arrange。每组测试数据结束后输出 --------------------,共 20 个 -,-的 ASCII 码为 45,请勿输出多余的空行或者空格。
用例输入 1
4 4 9 3 brysj, hhrhl. yqqlm, gsycl. 4 9 2 brysj, hhrhl. yqqlm, gsycl. 1 1005 6 poet 1 1004 6 poet
用例输出 1
108 brysj, hhrhl. yqqlm, gsycl. -------------------- 32 brysj, hhrhl. yqqlm, gsycl. -------------------- Too hard to arrange -------------------- 1000000000000000000 poet --------------------
提示
数据范围
总共 10 个测试点,数据范围满足:
测试点 | T | N | L | P |
---|---|---|---|---|
1 | ≤10 | ≤18 | ≤100 | ≤5 |
2 | ≤10 | ≤2×103 | ≤6×104 | ≤10 |
3 | ≤10 | ≤2×103 | ≤6×104 | ≤10 |
4 | ≤5 | ≤105 | ≤200 | ≤10 |
5 | ≤5 | ≤105 | ≤200 | ≤10 |
6 | ≤5 | ≤105 | ≤3×106 | 2 |
7 | ≤5 | ≤105 | ≤3×106 | 2 |
8 | ≤5 | ≤105 | ≤3×106 | ≤10 |
9 | ≤5 | ≤105 | ≤3×106 | ≤10 |
10 | ≤5 | ≤105 | ≤3×106 | ≤10 |
所有测试点中均满足句子长度不超过 30,P≥1。
上代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int M = (int)1e5;
int N, L, P;
char s[35];
int sum[M + 5];
struct node
{
int j, l, r;
}q[M + 5];
int l, r;
long double f[M + 5];
int bs1(int i)
{
int l = ::l, r = ::r, mid;
while(l < r)
{
mid = (l + r) >> 1;
if(q[mid].r >= i)
r = mid;
else
l = mid + 1;
}
return q[r].j;
}
long double cal(int i, int j)
{
long double sum = 1.0, num = abs(::sum[i] - ::sum[j] + i - j - 1 - L);
for(int i = 0; i < P; ++i) sum *= num;
return f[j] + sum;
}
int bs2(int i, int j, int l, int r)
{
int mid;
while(l < r)
{
mid = (l + r) >> 1;
if(cal(mid, i) > cal(mid, j))
l = mid + 1;
else
r = mid;
}
return r;
}
void ins(int i)
{
int pos = -1;
while(l <= r)
{
if(cal(q[r].l, i) <= cal(q[r].l, q[r].j))
pos = q[r--].l;
else
{
if(cal(q[r].r, i) < cal(q[r].r, q[r].j))
{
pos = bs2(i, q[r].j, q[r].l, q[r].r);
q[r].r = pos - 1;
}
break;
}
}
if(~pos)
{
q[++r].j = i;
q[r].l = pos;
q[r].r = N;
}
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d %d %d", &N, &L, &P);
for(int i = 1; i <= N; ++i)
{
scanf("%s", s);
sum[i] = sum[i - 1] + strlen(s);
}
l = 1, r = 0;
q[++r].j = 0, q[r].l = 1, q[r].r = N;
memset(f, 0, sizeof(f));
for(int i = 1; i <= N; ++i)
{
int j = bs1(i);
f[i] = cal(i, j);
while(l <= r && q[l].r <= i) ++l;
q[l].l = i + 1;
ins(i);
}
if(f[N] > (ll)1e18) printf("Too hard to arrange\n");
else printf("%lld\n", (ll)f[N]);
for(int i = 0; i < 20; ++i) putchar('-');
puts("");
}
return 0;
}