Description
Input
Output
对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出”Too hard to
arrange”(不包含引号)。每个输出后面加”——————–”
Sample Input
4
4 9 3
brysj,
hhrhl.
yqqlm,
gsycl.
4 9 2
brysj,
hhrhl.
yqqlm,
gsycl.
1 1005 6
poet
1 1004 6
poet
Sample Output
108
32
Too hard to arrange
1000000000000000000
HINT
总共10个测试点,数据范围满足:
测试点 T N L P 1 ≤10 ≤18 ≤100 ≤5 2 ≤10 ≤2000 ≤60000 ≤10
3 ≤10 ≤2000 ≤60000 ≤10 4 ≤5 ≤100000 ≤200 ≤10 5 ≤5 ≤100000 ≤200 ≤10
6 ≤5 ≤100000 ≤3000000 2 7 ≤5 ≤100000 ≤3000000 2
8 ≤5 ≤100000 ≤3000000 ≤10 9 ≤5 ≤100000 ≤3000000 ≤10
10 ≤5 ≤100000 ≤3000000 ≤10 所有测试点中均满足句子长度不超过30。【样例说明】
前两组输入数据中每行的实际长度均为6,后两组输入数据每行的实际长度均为4。一个排版方案中每行相邻两个句子之间的空格也算在这行的长度中(可参见样例中第二组数据)。每行末尾没有空格。
题解
四边形不等式优化一维dp的应用
很明显有转移方程
f[i]=min(f[j]+val(j,i)) f [ i ] = m i n ( f [ j ] + v a l ( j , i ) )
其中 val(j,i)=|sum[i]−sum[j]+(i−j−1)−L|p v a l ( j , i ) = | s u m [ i ] − s u m [ j ] + ( i − j − 1 ) − L | p
其中 sum[i] s u m [ i ] 表示前i首诗的长度和
我们只需要证明 val(j,i) v a l ( j , i ) 函数满足四边形不等式即可
只需证明
val(j,i)+val(j+1,i+1)<=val(j,i+1)+val(j+1,i) v a l ( j , i ) + v a l ( j + 1 , i + 1 ) <= v a l ( j , i + 1 ) + v a l ( j + 1 , i )
移项有
val(j,i)−val(j,i+1)<=val(j+1,i)−val(j+1,i+1) v a l ( j , i ) − v a l ( j , i + 1 ) <= v a l ( j + 1 , i ) − v a l ( j + 1 , i + 1 )
记 u=(sum[i]+i)−(sum[j]+j)−(L+1) u = ( s u m [ i ] + i ) − ( s u m [ j ] + j ) − ( L + 1 )
记 v=(sum[i]+i)−(sum[j+1]+j+1)−(L+1) v = ( s u m [ i ] + i ) − ( s u m [ j + 1 ] + j + 1 ) − ( L + 1 )
即证明
|u|p−|u+a[i+1]+1|p<=|v|p−|v+a[i+1]+1|p | u | p − | u + a [ i + 1 ] + 1 | p <= | v | p − | v + a [ i + 1 ] + 1 | p
显然有 u>v u > v ,即证明函数 y=|x|p−|x+c|p y = | x | p − | x + c | p 在常数c任意取值的情况下均有单调递减性
设p为奇数, x=[−c,0] x = [ − c , 0 ] 时,函数写作 y=−xp−(x+c)p y = − x p − ( x + c ) p
对y求导
可得导函数 y′=−p∗xp−1−p∗(x+c)p−1 y ′ = − p ∗ x p − 1 − p ∗ ( x + c ) p − 1
因为p-1是偶数,p是正整数
所以导函数 y′ y ′ 恒小于0
所以在该段下恒有函数y单调递减
对于p和c满足其他情况时也可运用导函数的知识证明函数y单调递减
如此可知道函数 val(j,i) v a l ( j , i ) 满足四边形不等式
于是f数组满足决策单调性
我们就可以愉快的 nlogn n l o g n 解决啦
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define LL long double
#define mx 1000000000000000000LL
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
LL pow_mod(LL a,int b)
{
LL ret=1;
while(b)
{
if(b&1)ret=ret*a;
a=a*a;b>>=1;
}
return ret;
}
int n;
LL L,p;
LL f[100005],sum[100005];
LL S(int px,int py){return f[py]+pow_mod(abs(sum[px]-sum[py]+px-py-1-L),p);}//i,j
struct node{int c,l,r;}li[100005];int h,t;
char ch[35];
int main()
{
int T;scanf("%d",&T);
while(T--)
{
n=read();L=read();p=read();
for(int i=1;i<=n;i++)
{
scanf("%s",ch+1);int len=strlen(ch+1);
sum[i]=sum[i-1]+len;
}
li[1].c=0;li[1].l=0;li[1].r=n;h=t=1;
for(int i=1;i<=n;i++)
{
if(li[h].r==i-1)h++;
li[h].l=i;f[i]=S(i,li[h].c);
if(h>t || S(n,i)<=S(n,li[t].c))
{
while(h<=t && S(li[t].l,i)<=S(li[t].l,li[t].c))t--;
if(h>t){li[++t].l=1;li[t].r=n;li[t].c=i;}
else
{
int l=li[t].l,r=li[t].r;
while(l<=r)
{
int mid=(l+r)>>1;
if(S(mid,i)<=S(mid,li[t].c))r=mid-1;
else l=mid+1;
}
li[t].r=l-1;
li[++t].l=l;li[t].r=n;li[t].c=i;
}
}
}
if(f[n]>mx)printf("Too hard to arrange\n");
else printf("%lld\n",(long long)f[n]);
printf("--------------------\n");
}
return 0;
}