生成函数全家桶

13 篇文章 0 订阅
6 篇文章 0 订阅

有用的式子

1.(牛顿二项式定理)

我们把组合数的定义推广:
( r k ) = r k ‾ k !   ( r ∈ C , k ∈ N ) \binom{r}{k}=\frac{r^{\underline{k}}}{k!}\space(r\in \mathbf{C},k\in \mathbf{N}) (kr)=k!rk (rC,kN)
其中 r k ‾ r^{\underline{k}} rk 指下降幂,即 ∏ i = 0 k − 1 ( r − i ) \prod_{i=0}^{k-1}(r-i) i=0k1(ri)。(不过大多数时候我们只需要用到实数域的定义)
然后我们就可以对二项式定理进行推广:
( 1 + x ) r = ∑ i ≥ 0 ( r i ) x i   ( r ∈ C ) (1+x)^{r}=\sum_{i\ge0}\binom{r}{i}x^i\space(r\in \mathbf{C}) (1+x)r=i0(ir)xi (rC)

2.

对于组合数:
( n + m m ) \binom{n+m}{m} (mn+m)
我们考虑其实际意义,枚举其与最右侧相连的极长连续段长度 i i i,那么就有:
( n + m m ) = ∑ i = 0 m ( n + m − i − 1 m − i ) = ∑ i = 0 m ( n + i − 1 i ) \binom{n+m}{m}=\sum_{i=0}^m\binom{n+m-i-1}{m-i}=\sum_{i=0}^m\binom{n+i-1}{i} (mn+m)=i=0m(min+mi1)=i=0m(in+i1)
我们常常会用到这个式子的反演。

普通生成函数(OGF)

数列 a a a 的普通生成函数为:
F ( x ) = ∑ n = 0 a n x n F(x)=\sum_{n=0}a_nx_n F(x)=n=0anxn
卷积性质:
A ( x ) ∗ B ( x ) = ∑ n = 0 x n ∑ i = 0 n a i b n − i A(x)*B(x)=\sum_{n=0}x^n\sum_{i=0}^{n}a_ib_{n-i} A(x)B(x)=n=0xni=0naibni

常见封闭形式:

1.

∑ n = 0 x n = 1 1 − x \sum_{n=0}x^n=\frac{1}{1-x} n=0xn=1x1
∑ n = 0 k x n = 1 − x k + 1 1 − x \sum_{n=0}^{k}x^n=\frac{1-x^{k+1}}{1-x} n=0kxn=1x1xk+1
证明:
就是等比求和公式。

2.

∑ n = 0 ( n + k − 1 k − 1 ) x n = 1 ( 1 − x ) k \sum_{n=0}\binom{n+k-1}{k-1}x^n=\frac{1}{(1-x)^k} n=0(k1n+k1)xn=(1x)k1
证明:

  1. 数学归纳法:结合式子一大力揉式子。
  2. 隔板法:第 n n n 项的系数等同于从 k k k ∑ n = 0 x n \sum_{n=0}x^n n=0xn 中个选出一项,次数后恰好为 n n n 的方案数,那么就转换为 k k k 个有序非负整数加和为 n n n 的方案数。全加一后隔板即可。

3.

∑ n = 0 ( n k ) x n = x k ( 1 − x ) k + 1 \sum_{n=0}\binom{n}{k}x^{n}=\frac{x^k}{(1-x)^{k+1}} n=0(kn)xn=(1x)k+1xk
证明:
第二个式子,为了方便稍微变下形:
∑ n = 0 ( n + k k ) x n = 1 ( 1 − x ) k + 1 \sum_{n=0}\binom{n+k}{k}x^n=\frac{1}{(1-x)^{k+1}} n=0(kn+k)xn=(1x)k+11
然后两边同乘 x k x^k xk
∑ n = 0 ( n + k k ) x n + k = x k ( 1 − x ) k + 1 \sum_{n=0}\binom{n+k}{k}x^{n+k}=\frac{x^k}{(1-x)^{k+1}} n=0(kn+k)xn+k=(1x)k+1xk
∑ n = k ( n k ) x n = x k ( 1 − x ) k + 1 \sum_{n=k}\binom{n}{k}x^{n}=\frac{x^k}{(1-x)^{k+1}} n=k(kn)xn=(1x)k+1xk
由于 n < k n<k n<k 是组合数全是0,所以求和可以伸下去,得到:
∑ n = 0 ( n k ) x n = x k ( 1 − x ) k + 1 \sum_{n=0}\binom{n}{k}x^{n}=\frac{x^k}{(1-x)^{k+1}} n=0(kn)xn=(1x)k+1xk

4.

∑ n = 0 ( k n ) x n = ( 1 + x ) k \sum_{n=0}\binom{k}{n}x^n=(1+x)^k n=0(nk)xn=(1+x)k
证明:
二项式定理即可。

指数生成函数(EGF)

数列 a a a 的指数生成函数为:
F ^ ( x ) = ∑ i = 0 a i n ! x i \hat{F}(x)=\sum_{i=0}\frac{a_i}{n!}x^i F^(x)=i=0n!aixi
卷积性质:
A ^ ( x ) ∗ B ^ ( x ) = ∑ n = 0 x n ∑ i = 0 n ( n i ) a i b n − i \hat{A}(x)*\hat{B}(x)=\sum_{n=0}x^n\sum_{i=0}^{n}\binom{n}{i}a_ib_{n-i} A^(x)B^(x)=n=0xni=0n(in)aibni

排列与圆排列

排列的方案数为 n ! n! n!,其 EGF 为:
P ^ ( x ) = ∑ n ! n ! x n = 1 1 − x \hat{P}(x)=\sum\frac{n!}{n!}x^n=\frac{1}{1-x} P^(x)=n!n!xn=1x1
类似于组合数的证明,每个圆排列对应 n n n 个排列,方案数为 ( n − 1 ) ! (n-1)! (n1)!,其 EGF 为:
Q ^ ( x ) = ∑ ( n − 1 ) ! n ! x n = ∑ x n n = − ln ⁡ ( 1 − x ) = ln ⁡ 1 1 − x = ln ⁡ P ^ ( x ) \hat{Q}(x)=\sum\frac{(n-1)!}{n!}x^n=\sum\frac{x^n}{n}=-\ln(1-x)=\ln\frac{1}{1-x}=\ln\hat{P}(x) Q^(x)=n!(n1)!xn=nxn=ln(1x)=ln1x1=lnP^(x)
∑ x n n = − ln ⁡ ( 1 − x ) \sum\dfrac{x^n}{n}=-\ln(1-x) nxn=ln(1x) 可通过对两边求导再积分证明)
这个关系可以这么理解:每个排列可以形成若干个置换环,每个置换环都是一个圆排列问题。
所以 当一个问题 F F F 可以转化为按照任意方法分成若干集合,每种划分的贡献是每个集合 G G G 问题的方案累乘起来时,它们的 EGF 就有如下等量关系:
F ^ ( x ) = exp ⁡ ( G ^ ( x ) ) \hat{F}(x)=\exp(\hat{G}(x)) F^(x)=exp(G^(x))

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值