EGF中多项式exp的组合意义

EGF中多项式exp的组合意义

EGF一般用来处理多重集的排列问题,在其上可以定义多项式的exp运算,在处理一类问题的时候有独特的作用

我们考虑将n个有标号的元素分为k个非空无序集合的方案数,记其EGF为 F k F_{k} Fk,再考虑 f i f_i fi表示在这个我们定义的集合中对集合元素的计数方式(也就是考虑元素在集合内的排列方式的个数,这是一个只跟集合大小有关的值),那么根据生成函数的定义,我们不难得到下式

F k ( n ) = n ! k ! ∑ ∑ i = 1 k a i = n ∏ j = 1 k f a j a j ! F_{k}(n)=\frac{n!}{k!}\sum_{\sum_{i=1}^{k}a_i=n}\prod_{j=1}^{k}\frac{f_{a_j}}{a_j!} Fk(n)=k!n!i=1kai=nj=1kaj!faj,最后除以 k ! k! k!是因为这k个集合是无序的,而原本的多个多项式卷积显然是有序的

现在我们记 F ( x ) ^ = ∑ i = 0 i n f f i x i i ! \hat{F(x)}=\sum_{i=0}^{inf}f_i\frac{x^i}{i!} F(x)^=i=0inffii!xi,也就是原本的 f i f_i fi的EGF

再记 G k ( x ) G_k(x) Gk(x) F k ( n ) F_k(n) Fk(n)的EGF,则有

G k ( x ) = ∑ n = 0 i n f F k ( n ) x n n ! G_k(x)=\sum_{n=0}^{inf}F_k(n)\frac{x^n}{n!} Gk(x)=n=0infFk(n)n!xn

= ∑ n = 0 i n f n ! k ! ( ∑ ∑ i = 1 k a i = n ∏ j = 1 k f a j a j ! ) x n n ! =\sum_{n=0}^{inf}\frac{n!}{k!}(\sum_{\sum_{i=1}^{k}a_i=n}\prod_{j=1}^{k}\frac{f_{a_j}}{a_j!})\frac{x^n}{n!} =n=0infk!n!(i=1kai=nj=1kaj!faj)n!xn

= 1 k ! ∑ n = 0 i n f ( ∑ ∑ i = 1 k a i = n ∏ j = 1 k f a j x a j a j ! ) =\frac{1}{k!}\sum_{n=0}^{inf}(\sum_{\sum_{i=1}^{k}a_i=n}\prod_{j=1}^{k}\frac{f_{a_j}x^{a_j}}{a_j!}) =k!1n=0inf(i=1kai=nj=1kaj!fajxaj)

= 1 k ! ( F ( x ) ^ ) k =\frac{1}{k!}(\hat{F(x)})^k =k!1(F(x)^)k

如果我们考虑所有 k ≥ 0 k\geq 0 k0,就有

∑ k ≥ 0 G k ( x ) = ∑ k ≥ 0 ( F ( x ) ^ ) k k ! = e x p F ( x ) ^ \sum_{k\geq 0}G_k(x)=\sum_{k\geq 0}\frac{(\hat{F(x)})^k}{k!}=exp\hat{F(x)} k0Gk(x)=k0k!(F(x)^)k=expF(x)^

我们惊奇地发现, G ( x ) G(x) G(x)的指数生成函数居然就是 f x f_x fx的生成函数的exp!

总结一下,多项式exp的组合意义就是:有标号元素构成的集合划分为任意个非空子集的总方案数。

来几个具体的例子


考虑大小为n的排列的个数是 n ! n! n!,其指数生成函数是 P ( x ) = ∑ n ≥ 0 n ! x n n ! = ∑ n ≥ 0 x n = 1 1 − x P(x)=\sum_{n\geq 0}\frac{n!x^n}{n!}=\sum_{n\geq 0}x^n=\frac{1}{1-x} P(x)=n0n!n!xn=n0xn=1x1

一个大小为n的圆排列个数是 ( n − 1 ) ! (n-1)! (n1)!,其指数生成函数是 G ( x ) = ∑ n ≥ 1 ( n − 1 ) ! x n n ! = ∑ n ≥ 1 x n n = − ln ⁡ ( 1 − x ) = l n ( 1 1 − x ) G(x)=\sum_{n\geq 1}\frac{(n-1)!x^n}{n!}=\sum_{n\geq 1}\frac{x^n}{n}=-\ln(1-x)=ln(\frac{1}{1-x}) G(x)=n1n!(n1)!xn=n1nxn=ln(1x)=ln(1x1)

不难发现 P ( x ) = e x p G ( x ) P(x)=expG(x) P(x)=expG(x)

仔细理解一下,众所周知,一个大小为n的排列一定可以拆成若干个环,每一个环内部的排列数就是一个圆排列的方案数,所以大小为n的排列的方案数就是把 1 , 2... n 1,2...n 1,2...n分成若干个非空集合,每一个集合的圆排列方案数之积,这与我们上面讲到的exp的组合意义相符合


第二类斯特林数 { n , k } \{n,k\} {n,k}的组合意义就是把n个数分成k个集合的方案数,这里一个集合的计数就是1,也就是说在上面推导过程中 F ( x ) ^ = { 1 , 1 , 1.... } \hat{F(x)}=\{1,1,1....\} F(x)^={1,1,1....}

其指数生成函数是 G k ( x ) = ∑ n ≥ 0 S ( n , k ) x n n ! = 1 k ! ( e x p ( x ) − 1 ) k G_{k}(x)=\sum_{n\geq 0}S(n,k)\frac{x^n}{n!}=\frac{1}{k!}(exp(x)-1)^k Gk(x)=n0S(n,k)n!xn=k!1(exp(x)1)k

贝尔数的组合意义是把n个数分成若干个非空集合的方案数,其生成函数是 B ^ ( x ) = e x p ( e x − 1 ) \hat{B}(x)=exp(e^x-1) B^(x)=exp(ex1)

不难理解,贝尔数与第二类斯特林数的区别就在于对分成的非空集合的个数的限制,那么 B ( x ) ^ = ∑ k ≥ 0 G k ( x ) \hat{B(x)}=\sum_{k\geq0}G_k(x) B(x)^=k0Gk(x)也就是时分自然的,这也与上面的理论相符合


举一反三,我们考虑n个点带标号的生成树个数的EGF为 F ( x ) ^ \hat{F(x)} F(x)^,那么n个点带标号的森林的个数就是 e x p F ( x ) ^ exp \hat{F(x)} expF(x)^,意义就是将n个点分成若干个树的方案数


[集训队作业2013] 城市规划

求n个点的有标号简单无向连通图的数量

这个可能并不是那么好直接想出来,但是按照我们刚刚的理论,可以考虑先求出n个点的有标号简单无向图的数量(不要要求连通),然后直接对其EGF直接取 ln ⁡ \ln ln就可以了

这个是非常好求的,就是一张完全图里面每一个点都有删或不删两种选择,其EGF就是 ∑ n ≥ 0 2 ( n 2 ) x n n ! \sum_{n\geq 0}2^{\binom{n}{2}}\frac{x^n}{n!} n02(2n)n!xn

所以答案就是 [ x n ] ln ⁡ ( ∑ n ≥ 0 2 ( n 2 ) x n n ! ) [x^n]\ln(\sum_{n\geq 0}2^{\binom{n}{2}}\frac{x^n}{n!}) [xn]ln(n02(2n)n!xn)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要探究EGF(表皮细胞生长因子)与FPKM表达之间的关系,你需要有EGF的表达数据和相应的基因的FPKM数据。然后,可以使用相关性分析来评估EGF表达与基因的FPKM表达之间的关联程度。 以下是一种可能的方法来分析EGF与基因的FPKM表达之间的关系: 1. 获取EGF的表达数据:根据你的实验或研究,获得EGF在不同样本或条件下的表达水平数据。这可以是基于实验测量的数据或从公共数据库获取的数据。 2. 获取基因的FPKM数据:根据你的实验或研究,获得感兴趣基因在不同样本或条件下的FPKM值。确保你有与EGF表达数据相对应的基因FPKM值。 3. 数据处理:将EGF表达数据和基因的FPKM数据整理成一个数据框,确保每一行对应一个样本或条件,每一列对应一个基因或EGF。 4. 计算相关系数:使用相关性分析方法(如Pearson相关系数或Spearman相关系数)计算每个基因与EGF之间的相关系数。你可以使用Python的`scipy.stats`模块的相关函数(如`spearmanr`)来计算Spearman相关系数。 5. 分析结果:根据计算得到的相关系数,评估EGF与基因的FPKM表达之间的关系。如果相关系数接近1或-1,则表示存在强相关性,而接近0则表示相关性较弱或不存在。 请注意,以上是一种基本的分析方法,具体的实现可能会根据你的数据和研究问题进行调整。另外,确保你的数据质量良好,并进行统计显著性检验以验证相关系数的显著性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值