群论笔记(1)

Definition/定义:

群G是一个带有乘法结构的集合,该乘法结构满足

0)整个集合对乘法运算闭合

1)结合律 :x(yz)=(xy)z \quad \forall x,y,z \in G

2)单位元:xe=ex=x \quad for \quad x,e \in G 

3)逆元:xx^{-1}=x^{-1}x \quad for \quad x,x^{-1} \in G

        我们很容易联想到逻辑电路教程中,逻辑代数所满足的一些特殊运算律,比如,它们不具有逆元素,取而代之的是互补律。

Example/例子:

1)  Ur =Sym(T)= \{ all\ bijective\ g: T \rightarrow T \} 全体双射的集合关于映射间的乘法,形成最基本的群

2) (\mathbb{Z},+)  整数集合关于整数加法这个”乘法“形成的群,特别的,这个群满足交换律,满足交换律的群叫阿贝尔群,这个整数加群一般作为阿贝尔群的代表性例子出现,+加号也常用于阿贝尔群的”乘号"

补充知识:

1.运算封闭、满足结合律、具有单位元被叫做半群monioid,作为范畴论category的例子出现。

2.运算,或者二元运算,也即出现在定义中的”乘法“,由映射map和笛卡尔积定义

一些零散定义:

1.有限群 finite group: |G|<\infty  ; 定义 :群G这个集合中,具有的元素的个数叫群G的order, 集合中含有的元素个数不是无穷的群叫有限群。

2.子群 subgroup  G' ; G' \subset G  子群仍然是群,只是子集。

3.同构 isomorphism : 保持运算结构的双射

4.同态 homomorphism : 保持运算结构

5.自同态 automorphism : Aut(G) =\{isomorphism f :G\rightarrow G\}

6.核 kernel : \{g:f(g)=e', \ g\in G, \ e'\in G' , f:G\rightarrow G'\}

7.像 image :\{g'|\forall g'=f(g) , f:G\rightarrow G' \}

Remark:

相较于映射Map,群之间的”映射" 叫态射morphism,这一概念将在范畴论介绍,同构与同态,是比较特殊的态射

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值