一、问题描述
八皇后问题的目标是在国际象棋棋盘中放置8个皇后,使得任何一个皇后都不会攻击到其他任一皇后。(皇后可以攻击和它在同一行,同一列或者同一对角线的任何棋子)
二、编程语言及算法
编程语言:python
算法:遗传算法
三、求解思路
1、种群初始化
首先要对个体进行初始化,对于第 i i i 列,编码为 x x x ,表示第 i i i 列的第 x x x 行有一个皇后,编号从 0 0 0 开始。
对于一个个体,则可以用 8 8 8 个编码来表示。
示例:下图的棋盘即可以用编码 06471352 06471352 06471352 来表示:
在初始化时,采用完全随机的方式进行编码,即对于每一列设置的编码都是随机的,
# 生成一个体individual
for i in range(8):
a = random.randint(0, 7)
individual.append(a)
初始种群设置为 4 4 4 个个体,我们便生成 4 4 4 个个体加入到种群中,从而完成种群的初始化。
# 计算生成的个体的适应度
fit_score = update_fitness_score(individual)
# 加入到种群中
parent_fitness.append(fit_score)
parent.append(individual)
2、适应度函数
适应度函数表示为:不互相攻击的皇后对的数目
那么当满足题目要求时,8个皇后都不互相攻击,共有 8 × 7 / 2 = 28 8×7 / 2 = 28 8×7/2=28 对,即当出现适应度为28时,程序便可以结束。
那么如何对该程序进行实现呢?
选择两个列(为避免重复运算,人为规定第一个列数小于第二个列数,如果这两个编码不相等,说明这两个皇后不在同一行,我们再判断两个列数的绝对值与对应的两个编码的绝对值是否相等,如果不相等,这说明两个皇后不在同一列,这时我们把适应度值 + 1 +1 +1 。这样适应度函数便设计完毕。
def update_fitness_score(individual):
value = 0
for i in range(8):
for j in range(i + 1, 8):
if individual[i] != individual[j]:
x = j - i
y = abs(individual[i] - individual[j])
if x != y:
value += 1
return value
3、如何选出两个父本
根据概率大小,在一个区域上根据适应度函数的大小划定不同的范围,此时在区域内生成一个随机数,该随机数落在谁的范围,那么就代表选择谁。重复两次,选择两个父本。
4、如何选取杂交点
随机选取两个点组成一个区间,将两个父本在该区间的基因进行交换
4、如何变异
自然中,变异是有一定的概率的,我们假设本题中的概率为 50 % 50\% 50%,生成一个在 0 − 1 0-1 0−1 之间的随机浮点数,如果该浮点数大于0.5,则进行变异。
变异的形式为基因突变,即在某个点的基因随机变为 0 − 7 0-7 0−7 中的一个。
四、程序运行结果
由于遗传算法模拟了自然选择中的遗传变异等行为,算法中加入了多个依靠概率运行的逻辑,在测试中,最少只用了 1000 1000 1000 多次迭代便得出了结果,最多用了十万多次才得出结果,不排除会出现几十万次甚至上百万次才出结果的情况。
对于本题来说,利用回溯算法做会更加简单且效率高,但对于一些更复杂的问题,难以通过一些固定的算法进行求解,那么采用遗传算法便可以明显降低算法复杂度且编写代码较容易。
五、代码
import copy
import random
import math
# 种群大小
population_size = 8
# 父种群的编码列表
parent = []
# 子种群的编码列表
children = []
# 父种群每个个体的适应度
parent_fitness = []
# 子种群每个个体的适应度
children_fitness = []
# 初始化个体
def initial_individual():
# 个体的编码
individual = []
# 8个编码
for i in range(8):
a = random.randint(0, 7)
individual.append(a)
# 计算生成的个体的适应度
fit_score = update_fitness_score(individual)
# 加入到种群中
parent_fitness.append(fit_score)
parent.append(individual)
return
# 更新适应度函数
def update_fitness_score(individual):
value = 0
for i in range(8):
for j in range(i + 1, 8):
if individual[i] != individual[j]:
x = j - i
y = abs(individual[i] - individual[j])
if x != y:
value += 1
return value
# 初始化1个种群,种群大小为population_size
def initial_population():
for i in range(population_size):
initial_individual()
return
# 选择出一个父本
def select():
# 所有个体的适应度之和
total_score = 0
for fit in parent_fitness:
total_score += fit
# 轮盘赌中的数
num = random.randint(0, total_score)
# 前面的适应度之和
front_score = 0
for i in range(population_size):
front_score += parent_fitness[i]
# 如果此时前面的适应度之和大于生成的随机数,那么该数必定落在编号为 i 的个体上
if front_score >= num:
return i
# 变异
def mutation(change_individual):
# 第pos个基因发生变异
pos = random.randint(0, 7)
# 改变的值
change = random.randint(0, 7)
change_individual[pos] = change
return change_individual
# 交叉产生后代
def hybridization():
# 选择两个父本
first = select()
second = select()
selected_parents = copy.deepcopy([parent[first], parent[second]])
# 交换从pos1到pos2的基因
pos1 = random.randint(0, 6)
pos2 = random.randint(0, 6)
# 保证pos1 <= pos2
if pos1 > pos2:
pos1, pos2 = pos2, pos1
# 交叉
tmp = selected_parents[0][pos1:pos2]
selected_parents[0][pos1:pos2] = selected_parents[1][pos1:pos2]
selected_parents[1][pos1:pos2] = tmp
# 一定的概率发生变异,假设概率为0.5
may = random.random()
if may > 0.5:
selected_parents[0] = mutation(selected_parents[0])
may = random.random()
if may > 0.5:
selected_parents[1] = mutation(selected_parents[1])
# 更新适应度
first_fit = update_fitness_score(selected_parents[0])
second_fit = update_fitness_score(selected_parents[1])
# 加入到子代中
children.append(selected_parents[0])
children.append(selected_parents[1])
children_fitness.append(first_fit)
children_fitness.append(second_fit)
return
# 初始化种群
initial_population()
# 计算迭代次数
count = 0
# not a number
find = float('nan')
while True:
count += 1
if count % 1000 == 0:
print('第%d' % count + '次迭代')
# 杂交population_size/2次产生population_size个后代
for k in range(population_size // 2):
hybridization()
# 如果某个个体适应度达到28,说明此时找到了一个解
for k in range(population_size):
if children_fitness[k] == 28:
# 记录解的位置
find = k
break
if not math.isnan(find):
break
# 将子代种群放入父代中作为新的父代,子代清空
parent[0:population_size] = children[0:population_size]
parent_fitness[0:population_size] = children_fitness[0:population_size]
children = []
children_fitness = []
# 此时找到满足要求的子代个体
res = children[find]
print(res)
# 构造棋盘
res_queen = [[0 for i in range(8)] for j in range(8)]
for t in range(8):
res_queen[res[t]][t] = 1
# 将棋盘打印
print("找到结果:")
for t in range(8):
print(res_queen[t])