用遗传算法解决八皇后问题

本文介绍如何使用Python和遗传算法解决经典问题——八皇后问题,包括种群初始化、适应度函数设计、选择和交叉操作,以及如何通过概率驱动的算法找到解决方案。展示了遗传算法在解决复杂问题中的应用实例和可能的迭代次数不确定性。
摘要由CSDN通过智能技术生成

一、问题描述

八皇后问题的目标是在国际象棋棋盘中放置8个皇后,使得任何一个皇后都不会攻击到其他任一皇后。(皇后可以攻击和它在同一行,同一列或者同一对角线的任何棋子)

二、编程语言及算法

编程语言:python

算法:遗传算法

三、求解思路

1、种群初始化

首先要对个体进行初始化,对于第 i i i 列,编码为 x x x ,表示第 i i i 列的第 x x x 行有一个皇后,编号从 0 0 0 开始。

对于一个个体,则可以用 8 8 8 个编码来表示。

示例:下图的棋盘即可以用编码 06471352 06471352 06471352 来表示:

在初始化时,采用完全随机的方式进行编码,即对于每一列设置的编码都是随机的,

# 生成一个体individual
for i in range(8):
    a = random.randint(0, 7)
    individual.append(a)

初始种群设置为 4 4 4 个个体,我们便生成 4 4 4 个个体加入到种群中,从而完成种群的初始化。

# 计算生成的个体的适应度
fit_score = update_fitness_score(individual)
# 加入到种群中
parent_fitness.append(fit_score)
parent.append(individual)
2、适应度函数

适应度函数表示为:不互相攻击的皇后对的数目

那么当满足题目要求时,8个皇后都不互相攻击,共有 8 × 7 / 2 = 28 8×7 / 2 = 28 8×7/2=28 对,即当出现适应度为28时,程序便可以结束。

那么如何对该程序进行实现呢?

选择两个列(为避免重复运算,人为规定第一个列数小于第二个列数,如果这两个编码不相等,说明这两个皇后不在同一行,我们再判断两个列数的绝对值与对应的两个编码的绝对值是否相等,如果不相等,这说明两个皇后不在同一列,这时我们把适应度值 + 1 +1 +1 。这样适应度函数便设计完毕。

def update_fitness_score(individual):
    value = 0
    for i in range(8):
        for j in range(i + 1, 8):
            if individual[i] != individual[j]:
                x = j - i
                y = abs(individual[i] - individual[j])
                if x != y:
                    value += 1
    return value
3、如何选出两个父本

根据概率大小,在一个区域上根据适应度函数的大小划定不同的范围,此时在区域内生成一个随机数,该随机数落在谁的范围,那么就代表选择谁。重复两次,选择两个父本。

4、如何选取杂交点

随机选取两个点组成一个区间,将两个父本在该区间的基因进行交换

4、如何变异

自然中,变异是有一定的概率的,我们假设本题中的概率为 50 % 50\% 50%,生成一个在 0 − 1 0-1 01 之间的随机浮点数,如果该浮点数大于0.5,则进行变异。

变异的形式为基因突变,即在某个点的基因随机变为 0 − 7 0-7 07 中的一个。

四、程序运行结果

由于遗传算法模拟了自然选择中的遗传变异等行为,算法中加入了多个依靠概率运行的逻辑,在测试中,最少只用了 1000 1000 1000 多次迭代便得出了结果,最多用了十万多次才得出结果,不排除会出现几十万次甚至上百万次才出结果的情况。

对于本题来说,利用回溯算法做会更加简单且效率高,但对于一些更复杂的问题,难以通过一些固定的算法进行求解,那么采用遗传算法便可以明显降低算法复杂度且编写代码较容易。

五、代码

import copy
import random
import math

# 种群大小
population_size = 8
# 父种群的编码列表
parent = []
# 子种群的编码列表
children = []
# 父种群每个个体的适应度
parent_fitness = []
# 子种群每个个体的适应度
children_fitness = []


# 初始化个体
def initial_individual():
    # 个体的编码
    individual = []
    # 8个编码
    for i in range(8):
        a = random.randint(0, 7)
        individual.append(a)
    # 计算生成的个体的适应度
    fit_score = update_fitness_score(individual)
    # 加入到种群中

    parent_fitness.append(fit_score)
    parent.append(individual)
    return


# 更新适应度函数
def update_fitness_score(individual):
    value = 0
    for i in range(8):
        for j in range(i + 1, 8):
            if individual[i] != individual[j]:
                x = j - i
                y = abs(individual[i] - individual[j])
                if x != y:
                    value += 1
    return value


# 初始化1个种群,种群大小为population_size
def initial_population():
    for i in range(population_size):
        initial_individual()
    return


# 选择出一个父本
def select():
    # 所有个体的适应度之和
    total_score = 0
    for fit in parent_fitness:
        total_score += fit

    # 轮盘赌中的数
    num = random.randint(0, total_score)
    # 前面的适应度之和
    front_score = 0
    for i in range(population_size):
        front_score += parent_fitness[i]
        # 如果此时前面的适应度之和大于生成的随机数,那么该数必定落在编号为 i 的个体上
        if front_score >= num:
            return i


# 变异
def mutation(change_individual):
    # 第pos个基因发生变异
    pos = random.randint(0, 7)
    # 改变的值
    change = random.randint(0, 7)
    change_individual[pos] = change
    return change_individual


# 交叉产生后代
def hybridization():
    # 选择两个父本
    first = select()
    second = select()
    selected_parents = copy.deepcopy([parent[first], parent[second]])
    # 交换从pos1到pos2的基因
    pos1 = random.randint(0, 6)
    pos2 = random.randint(0, 6)
    # 保证pos1 <= pos2
    if pos1 > pos2:
        pos1, pos2 = pos2, pos1
    # 交叉
    tmp = selected_parents[0][pos1:pos2]
    selected_parents[0][pos1:pos2] = selected_parents[1][pos1:pos2]
    selected_parents[1][pos1:pos2] = tmp
    # 一定的概率发生变异,假设概率为0.5
    may = random.random()
    if may > 0.5:
        selected_parents[0] = mutation(selected_parents[0])
    may = random.random()
    if may > 0.5:
        selected_parents[1] = mutation(selected_parents[1])
    # 更新适应度
    first_fit = update_fitness_score(selected_parents[0])
    second_fit = update_fitness_score(selected_parents[1])

    # 加入到子代中
    children.append(selected_parents[0])
    children.append(selected_parents[1])
    children_fitness.append(first_fit)
    children_fitness.append(second_fit)
    return


# 初始化种群
initial_population()
# 计算迭代次数
count = 0
# not a number
find = float('nan')
while True:
    count += 1
    if count % 1000 == 0:
        print('第%d' % count + '次迭代')
    # 杂交population_size/2次产生population_size个后代
    for k in range(population_size // 2):
        hybridization()
    # 如果某个个体适应度达到28,说明此时找到了一个解
    for k in range(population_size):
        if children_fitness[k] == 28:
            # 记录解的位置
            find = k
            break
    if not math.isnan(find):
        break
    # 将子代种群放入父代中作为新的父代,子代清空
    parent[0:population_size] = children[0:population_size]
    parent_fitness[0:population_size] = children_fitness[0:population_size]
    children = []
    children_fitness = []

# 此时找到满足要求的子代个体
res = children[find]
print(res)

# 构造棋盘
res_queen = [[0 for i in range(8)] for j in range(8)]
for t in range(8):
    res_queen[res[t]][t] = 1
# 将棋盘打印
print("找到结果:")
for t in range(8):
    print(res_queen[t])

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值