数学/数论专题-学习笔记:矩阵小记#2(矩阵快速幂)

数学/数论专题-学习笔记:矩阵小记#2(矩阵快速幂)

1. 前言

本篇文章是作者学习矩阵时候的一些笔记。

注意作者是个 OIer,因此并不会涉及到专业的线性代数知识(或者说是极少)。

前置知识:矩阵定义+矩阵乘法正整数快速幂

2. 矩阵快速幂

我们知道复数(或者简单点,实数)中有幂的定义:

对于 a ∈ C a \in C aC,将 a × a × . . . × a a \times a \times ... \times a a×a×...×a(共 n n n a a a)记作 a n a^n an

因此仿照这个定义,矩阵中的幂的定义如下:

对于一个 k × k k \times k k×k 大小的矩阵 A A A,将 A A A A . . . A AAAA...A AAAA...A(共 n n n A A A)记作 A n A^n An

需要注意的是 A A A 的行数与列数需要相同,否则不满足矩阵乘法的要求。

那么我们朴素计算 A n A^n An,复杂度是 O ( k 3 n ) O(k^3n) O(k3n)

考虑如何优化呢?

回想一下正整数快速幂的做法:利用结合律,将 a b a^b ab 中的 b b b 按二进制位拆掉做到 O ( log ⁡ b ) O(\log b) O(logb) 的复杂度。

由于矩阵也满足结合律,因此我们也可以利用结合律,将指数 b b b 拆成二进制运算,这样就可以做到 O ( k 3 log ⁡ b ) O(k^3 \log b) O(k3logb) 的复杂度( k k k 是矩阵大小)。

模板题链接:P3390 【模板】矩阵快速幂

Code:

/*
========= Plozia =========
    Author:Plozia
    Problem:P3390 【模板】矩阵快速幂
    Date:2021/6/1
========= Plozia =========
*/

#include <bits/stdc++.h>

typedef long long LL;
const int MAXN = 100 + 10, P = 1e9 + 7;
int n;
LL k;

struct Matrix
{
    LL a[MAXN][MAXN];
    Matrix operator *(const Matrix &fir)
    {
        Matrix c; memset(c.a, 0, sizeof(c.a));
        for (int i = 1; i <= n; ++i)
            for (int k = 1; k <= n; ++k)
            {
                int r = a[i][k];
                for (int j = 1; j <= n; ++j) { c.a[i][j] += r * fir.a[k][j]; c.a[i][j] %= P; }
            }
        return c;
    }
}a;

LL Read()
{
    LL sum = 0, fh = 1; char ch = getchar();
    for (; ch < '0' || ch > '9'; ch = getchar()) fh -= (ch == '-') << 1;
    for (; ch >= '0' && ch <= '9'; ch = getchar()) sum = (sum << 3) + (sum << 1) + (ch ^ 48);
    return sum * fh;
}
int Max(int fir, int sec) { return (fir > sec) ? fir : sec; }
int Min(int fir, int sec) { return (fir < sec) ? fir : sec; }

Matrix ksm(Matrix a, LL b, LL p)
{
    Matrix ans;
    for (int i = 1; i <= n; ++i)
            ans.a[i][i] = 1;
    for (; b; b >>= 1, a = a * a)
        if (b & 1) ans = ans * a;
    return ans;
}

int main()
{
    n = Read(), k = Read();
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= n; ++j)
            a.a[i][j] = Read();
    Matrix ans = ksm(a, k, P);
    for (int i = 1; i <= n; ++i)
    {
        for (int j = 1; j <= n; ++j) printf("%lld ", ans.a[i][j]);
        printf("\n");
    }
    return 0;
}

3. 例题

矩阵快速幂一个很重要的应用就是加速递推。

举个例子:P1962 斐波那契数列

如果采用直接递推的 O ( n ) O(n) O(n) 方式,将会获得 60pts 的好成绩。

那么如何得到 100pts 呢?这个时候就需要矩阵出场了。

由式子 F n = F n − 2 + F n − 1 F_n=F_{n-2}+F_{n-1} Fn=Fn2+Fn1,我们可以构造矩阵 [ F n − 1 F n ] \begin{bmatrix}F_{n-1}&F_n\end{bmatrix} [Fn1Fn],则要推出的矩阵是 [ F n F n + 1 ] \begin{bmatrix}F_{n}&F_{n+1}\end{bmatrix} [FnFn+1]

对要推出的矩阵做一个变形: [ 0 × F n − 1 + 1 × F n 1 × F n − 1 + 1 × F n ] \begin{bmatrix}0 \times F_{n-1} + 1 \times F_{n}&1 \times F_{n-1} + 1 \times F_{n}\end{bmatrix} [0×Fn1+1×Fn1×Fn1+1×Fn]

于是我们可以构造出这样的转移矩阵: [ 0 1 1 1 ] \begin{bmatrix}0&1\\1&1\end{bmatrix} [0111]

于是 [ F n − 1 F n ] [ 0 1 1 1 ] = [ F n F n + 1 ] \begin{bmatrix}F_{n-1}&F_n\end{bmatrix}\begin{bmatrix}0&1\\1&1\end{bmatrix}=\begin{bmatrix}F_{n}&F_{n+1}\end{bmatrix} [Fn1Fn][0111]=[FnFn+1]

现在已知初状态矩阵 [ F 1 F 2 ] \begin{bmatrix}F_1&F_2\end{bmatrix} [F1F2],因此如果我们要求 F n ( n ≥ 3 ) F_n(n \geq 3) Fn(n3) 的值,我们就可以计算下面的结果,然后取第二个元素:

[ F 1 F 2 ] [ 0 1 1 1 ] n − 2 \begin{bmatrix}F_1&F_2\end{bmatrix}\begin{bmatrix}0&1\\1&1\end{bmatrix}^{n-2} [F1F2][0111]n2

发现这个可以用矩阵快速幂优化。

注意当 n < 3 n<3 n<3 的时候直接输出 F n F_{n} Fn

4. 总结

  • 矩阵快速幂:利用矩阵乘法的结合律减少复杂度。
  • 应用:利用矩阵优化式子来加速递推。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值